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ABSTRACT  

 At implantation, the mouse embryo undergoes a critical transformation which 

requires the precise spatiotemporal control of signalling pathways necessary for 

morphogenesis and developmental progression. The role played by such signalling pathways 

during this transition are largely unexplored, due to the inaccessibility of the embryo during 

the implantation when it becomes engulfed by uterine tissues. Genetic studies demonstrate 

that mutant embryos for BMPs die around gastrulation. Here we have aimed to dissect the 

role of BMPs during pre- to post-implantation transition by using a protocol permitting the 

development of the embryo beyond implantation stages in vitro and using stem cells to 

mimic post-implantation tissue organisation. By assessing both the canonical and non-

canonical mechanisms of BMP, we show that the loss of canonical BMP activity compromises 

the extra-embryonic ectoderm development. Our analyses demonstrate that BMP signalling 

maintains stem cell populations within both embryonic/extra-embryonic tissues during pre- 

to post-implantation development. These results may provide insight into the role played by 

BMP signalling in controlling early embryogenesis. 
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INTRODUCTION 

 On the fourth day after fertilization, the mouse blastocyst implants into the uterus 

and undergoes growth accompanying with a series of morphological changes leading to 

formation of an elongated egg cylinder structure. In this process, the initially amorphous 

epiblast (EPI), transforms into a polarized cup-shaped epithelium located at the distal region 

of the egg cylinder, whereas the polar trophectoderm (TE) develops into the extra-

embryonic ectoderm (ExE) at the proximal region. Both of these tissues will become 

enveloped by another extra-embryonic tissue, the primitive endoderm (PE)-derived visceral 

endoderm (VE) (Bedzhov et al., 2014a; Rivera-Perez and Hadjantonakis, 2014; Rossant and 

Tam, 2009). During this transition, the embryo must maintain its stem cell populations, 

resident both in embryonic and extra-embryonic compartments in order to permit further 

development (Boroviak et al., 2014; Hemberger et al., 2020; Kunath et al., 2004). These stem 

cell populations are present only transiently in early embryos as they quickly differentiate 

into various somatic cells throughout development, but failure to maintain stemness in 

these early stages, and premature differentiation may result in loss of lineage specification 

or tissue growth, and compromise further development. 

BMPs are members of the TGF-beta family of signalling components, which transduce signals 

by binding to complexes of type I and II serine/threonine kinase receptors (Heldin et al., 

1997; Massague and Wotton, 2000). Ligand binding induces receptor phosphorylation which 

then signal via two independent downstream pathways: the canonical pathway through 

Smad1/5/9, and the non-canonical pathway through p38-MAPK (Miyazono et al., 2010). It 

has been shown that embryos mutant for BMP signalling are able to develop to the post-

implantation stages, however they exhibit developmental abnormalities and fail to 

gastrulate, and die around E8.5 (Beppu et al., 2000; Chu et al., 2004; Di-Gregorio et al., 2007; 

Lawson et al., 1999; Sirard et al., 1998). Recently, we demonstrated that BMP signalling 

regulates the correct pre-implantation development of both extra-embryonic lineages, PE 

and TE, but not the embryonic lineage (Graham et al., 2014). However, it has not been 

possible to investigate the role of this pathway during implantation, when the blastocyst 

transforms into the egg cylinder, due to an embryo inaccessibility as it implants. Here, we 

utilise a system to culture mouse embryos through implantation stages in vitro (Bedzhov et 

al., 2014b; Morris et al., 2012) to investigate the specific role of BMPs during this pre- to -

post-implantation transition. We further exploit mouse embryonic stem cells (ESCs) and 

trophoblast stem cells (TSCs) to recapitulate EPI and ExE tissue organisation in a 3D in vitro 

platform. Through pharmacologically mediated loss of function experiments, our results 

show that, importantly, canonical BMP mechanism, but not the non-canonical mechanism, 

regulates proper ExE development at implantation. Our data suggest that the compromised 

development of ExE tissue is due to the decreased proliferative capacity of TSC population 

under BMP inhibition. Although EPI continues correct tissue remodelling at peri-

implantation stages, we found that BMP/Smad inhibition promotes accelerated cell death in 

EPI at early post-implantation onwards. ESCs in 3D culture, mimicking EPI development in 
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vitro, prematurely upregulate expression of differentiation markers in the absence of 

BMP/Smads, highlighting causes of improper maintenance of EPI tissue in vivo. Altogether 

we demonstrate that canonical BMP activities are required to ensure extra-embryonic tissue 

development and to maintain embryonic identity during pre- to post-implantation transition. 

RESULTS  

Inhibition of BMP signalling prevents normal development of extra-embryonic lineages 

 In order to determine whether BMP signalling is present and play a role in peri-

implantation development, we cultured mouse embryos from the blastocyst stage for 48h 

until they reached the egg cylinder stage in the presence of three different inhibitors of the 

BMP pathway (Fig. 1A-B, S1A-D). To block canonical (Smad-dependent) BMP pathway, we 

used both Noggin, a BMP ligand antagonist, and Dorsomorphin, a small molecule chemical 

inhibitor to selectively inhibit Smad1/5/9 signalling (Graham et al., 2014; Walsh et al., 2010; 

Yu et al., 2008). To selectively inhibit p38-MAPK signalling and block the non-canonical 

(Smad-independent) pathway, we used SB203580 (SB) (Anderson and Darshan, 2008; Sozen 

et al., 2015). When BMP activity was lost, embryos developed clear morphological 

abnormalities, in line with previous reports (Beppu et al., 2000; Chu et al., 2004; Di-Gregorio 

et al., 2007; Sirard et al., 1998; Tremblay et al., 2001). Particularly in Noggin and 

Dorsomorphin-treated groups, embryos displayed disrupted development: compared to 

control counterparts, embryos were noticeably smaller, contained fewer cells, and the 

percentage of embryos that developed to egg cylinder stage was significantly reduced (Fig. 

1C-E, Supplementary Movies 1-3). Our quantification of cell numbers in all lineages at the 

early post-implantation stage of development (48h of in vitro culture), showed that the loss 

of canonical BMP activity caused significant reductions in cell number across all lineages in a 

dose-dependent manner, with losses being most pronounced in ExE and VE lineages (Fig. 1F, 

G). However, blocking non-canonical BMP activity through SB treatment incurred much 

milder reductions in cell numbers that were not significant (Fig. 1H). After careful 

examination of developing embryos treated with Dorsomorphin, we observed a range of 

phenotypes as assessed by ExE tissue size: (i) decreased ExE (between 50-100µm in length 

along the proximal-distal axis; 45%), (ii) poorly defined ExE (less than 50µm in length; 35%), 

and (iii) a complete lack of ExE (0µm; 20%) (Fig. 2A, B). Embryos in the third category 

consisted of only EPI and surrounding VE layer (Fig. 2A, B).  

Both TE and ExE contain TSCs which can be isolated from these tissues and grown in vitro 

(Tanaka et al., 1998; Uy et al., 2002). The proliferative potential of both of these tissues is 

dependent on this TSCs population and a failure to maintain these stem cells would be 

expected to affect ExE formation (Tanaka et al., 1998). We therefore next investigated 

whether the absence of BMP might affect stem cell organisation. After analysing the active 

BMP signalling in TSCs by immunoflourescence and qRT-PCR (Fig. 2C, D), we embedded TSCs 

in 3D Matrigel (to mimic basal membrane normally provided in the embryo and surrounds 

ExE compartment), in conditions required for TSC maintenance (Ohinata and Tsukiyama, 
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2014; Tanaka et al., 1998), and then added Noggin (50ng/mL), Dorsomorphin (0.1µM/mL); or 

SB (0.5µM/mL) for 72h (Fig. 2E-G). We found that, like BMP-inhibited embryos, organisation 

of TSC structures without BMP signalling was variable. Specifically, 40% of structures 

cavitated with decreased cell numbers, 30% did not cavitate and were poorly organised 

(30%), and 30% of structures contained dying cells (identified by pyknotic and fragmented 

cell nuclei) (Fig. 2H, I). This range of phenotypes parallel those observed in the ExE 

compartment of post-implantation embryos following BMP inhibition (Fig. 2A-B), indicating 

that TSC provides an in vitro model to mimic ExE phenotypes. Together, these results 

indicate an important involvement of canonical BMPs in pre- to post-implantation transition 

and specifically in the development of the extra-embryonic tissue. 

Disrupted ExE tissue development after BMP suppression is a result of the decreased stem 

cell proliferation 

Our findings of impaired development of ExE with the decreased number of cells, 

first directed us to investigate the expression of molecular markers responsible for ExE 

lineage identity in the absence of BMP signalling. We assessed transcription factors critical to 

ExE specification, and also required for maintenance of TSCs during the pre- to post-

implantation transition including Eomes, Cdx2, Tfap2c and Elf5 (Latos and Hemberger, 2014; 

Latos et al., 2015; Lee et al., 2016). We did not observe a significant change in the expression 

of these transcription factors in the ExE lineage following the 48h of any inhibitor treatments 

used, compared to the controls (Fig. S2A, B). 3D TSC structures demonstrated similar 

outcome when analysed for same markers (Fig. S2C, D). To investigate specifically, we 

transfected TSCs with lipofectamine/siRNA complexes and cultured the cells for 48h to 

knocked down Smad5 in TSCs by siRNA and block intracellular BMP/Smad activity (Fig. S2E, 

F).  Upon phosphorylation by BMP receptors, R-Smads 1, 5, 8 form complexes with Smad4 

and translocate to the nucleus. Abrogation of any one of the R-Smads functionally disrupts 

Smad-signalling (Fig. S2E) (Nishimura et al., 2003). After Smad5 KD, although the expression 

levels of core TFs in TSCs were decreased, it was not significant (Fig. S2G). These results 

suggested that BMPs may not directly control cell identity at implantation.  

We next sought to investigate other possible underlying reasons leading to tissue lost at 

implantation. It is known that stem cells possess remarkable proliferative capacity. 

Dysregulation or loss of the proliferation ultimately leads to stem cell depletion which then 

can lead to distrusted tissue maintenance (Orford and Scadden, 2008). Promoted by our 

observation that BMP inhibition disrupts tissue development, we analysed proliferation in 

both ESCs and TSCs structures grown in Matrigel, as in vitro models mimicking EPI and ExE 

development, respectively. These 3D structures were assessed for the expression of 

Phospho-Histone-H3 (H3S10-P) protein, a marker of proliferation (Chadee et al., 1999; Strahl 

and Allis, 2000). No changes were observed in ESC structures (Fig. 3A, B), but a significant 

reduction of H3S10-P expressed cells was detected in TSC structures following BMP 

inhibition (Fig. 3C, D). When we analysed embryos developed in vitro, no difference was 

detected between control and inhibitor-treated embryos in terms of the average percentage 
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of cells positive for H3S10-P (Fig. 3E, F). However, time course analysis of change in cell 

number in EPI and ExE lineages showed significant reduction of cell numbers in ExE lineage 

(Fig. 3G). This suggests cell cycle length is proportionally longer in BMP inhibited embryos, 

which ultimately leads to less growth in the ExE (Fig. 3G). Overall, this supports our previous 

observation of impaired growth in ExE lineage in embryos. 

Absence of BMP leads to increased cell death in the EPI lineage at post-implantation 

Since the decreased cell number in ExE tissue can also occur as a result of increased 

cell death, we analysed this possibility in embryos grown in the absence of BMP signalling. 

First, we let embryos to develop in the presence of 500ng/ml
-1 

of Noggin, 1µM/mL of 

Dorsomorphin or 10µM/mL SB from blastocyst to egg cylinder stage and examined the 

expression of cleaved-caspase-3, an apoptotic cell marker in each developing tissue (Fig. 4A). 

After analysing three consecutive stages representing peri- and early post-implantation, no 

significant increase for the average percentage of cells expressing cleaved-caspase-3 was 

observed neither in VE nor ExE tissues at any time point (Fig. 4B). This lends credence to the 

hypothesis that the absence of canonical BMP activity drives a prolonged cell cycle length, 

ultimately leading to impaired tissue growth (Fig. 3G).  

Embryo development requires coordinated morphogenesis between embryonic and extra-

embryonic lineages. When cleaved-caspase-3 expression was analysed in EPI lineage, we 

found no significant difference in early time points of peri-implantation development in the 

absence of canonical BMPs (Fig. 4A, B). Notably, the most significant increase in cell death 

was found in the EPI at the post-implantation time point (4.4-fold for Noggin, 10.6-fold for 

Dorsomorphin, 2.2-fold for SB, compared with control embryos) (Fig. 4B). To verify these 

results, we filmed the development of control and Noggin-treated embryos under time-lapse 

microscope during pre- to post-implantation transition, in the presence of SYTOX, a 

fluorescent reporter of cell death, and visualized the dying cells in real-time (Bedzhov and 

Zernicka-Goetz, 2014; D'Sa-Eipper et al., 2001). We observed SYTOX-positive cells were 

mainly concentrated in the EPI tissue of the developing egg cylinder after Noggin treatment 

(Fig. 4C). Moreover, ESCs embedded in 3D Matrigel, mimicking the EPI tissue 

morphogenesis, also showed increased cell death after dorsomorphin treatment (Fig. 4D).  

Overall, our analyses indicate divergent roles for canonical BMP signalling in ExE versus EPI 

development. While BMP signalling tunes the rate of cell-cycle in the ExE, its inhibition 

promotes cell death in the EPI, indicating a pro-survival role.  

Loss of BMP/Smad signalling induces cell differentiation in 3D ESC rosettes 

At the time of embryo implantation, EPI cells transit through distinct pluripotent states and 

become primed for differentiation.  Naïve pluripotency is established in the non-polar EPI 

cells of the blastocyst (Nichols and Smith, 2009). Upon implantation, cells in the EPI lineage 

polarize and a central lumen forms (Bedzhov and Zernicka-Goetz, 2014). This morphological 

remodelling of the EPI at pre-to-post-implantation transition can be recapitulated in vitro 
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using cultured ESCs embedded in Matrigel, termed ESC rosettes (Bedzhov and Zernicka-

Goetz, 2014; Shahbazi et al., 2017). Exploiting this in vitro model, we first asked whether 

BMP signalling plays a role in EPI morphogenesis. To do this, we analysed self-organization 

and lumenogenesis of ESC spheres grown in Matrigel for 48h with podocalyxin, a marker for 

polarisation and lumen formation (Fig. 5A). After BMP inhibition, all ESC structures showed 

polarized organization with a central cavity, similar to control (Fig. 5A). We next cultured 

blastocysts derived from CAG:GFP line that exhibits GFP in the membrane (Rhee et al., 2006) 

during pre- to post-implantation transition and filmed their development with confocal 

microscopy. As the blastocysts proceeded through post-implantation in vitro, EPI cells 

become polarised and displayed cavity formation upon Dorsomorphin treatment in spite of 

severe failure in ExE formation (Fig. 5B). These results indicated that EPI morphological 

remodelling during pre- to post-implantation development is not affected by the BMP 

activity.  

Despite unaffected EPI morphogenesis, in order to further explore whether the loss of BMP 

signalling influences fate dynamics and differentiation, we analysed the molecular signature 

in EPI-like ESC rosettes. Stem cell culture conditions in the presence of GSK3B and MEK 

inhibitors, and the leukemia inhibitory factor (called 2i-LIF), allow self-renewal and reduce 

intercellular heterogeneity to maintain ESCs in a naïve pluripotent state (Ying et al., 2008). 

Standard 2D-culture on gelatin-coated plates, in the absence of 2i-LIF has previously been 

used to induce differentiation in ESCs (Boroviak et al., 2014). Thus, we used gelatin group as 

a positive control to induce differentiation in ESCs, and to compare them with the EPI-like 

ESC rosettes grown in our 3D Matrigel protocol. We first analysed expression of Id genes, 

downstream targets of Smads and also known for maintaining stemness in ESCs (Li and 

Chen, 2013). We first confirmed that Id genes were downregulated in ESCs grown on gelatin 

as a result of induced differentiation (Fig. 5C). Id genes were highly expressed in ESC rosettes 

grown in Matrigel and found to be decreased when BMP signalling was inhibited, as 

expected after loss of BMP activity (Fig. 5C). Further assessment with marker genes 

associated with early differentiation of the EPI, including Acsl4, Dll3, Fgf5 and Otx2 (Ghimire 

et al., 2018), showed significant increase in ESC rosettes in the absence of BMP (Fig. 5C). 

These results indicate that blocking the BMP/Smad activity results in activation of early 

differentiation genes in pluripotent cells. This observation is in line with previous studies 

demonstrating BMP signalling promotes DNA hypo-methylation in ESC culture (Gomes 

Fernandes et al., 2016). The present experiments also suggest that the premature 

differentiation in embryonic lineage may be associated with increased cell death following 

post-implantation stages. 

DISCUSSION 

It is well known that elimination of individual components of the BMP signalling 

pathway prevents development beyond implantation (Beppu et al., 2000; Chu et al., 2004; 

Sirard et al., 1998; Yang et al., 1998). These BMP mutant embryos show reduced size and 

tissue disorganisation at early post-implantation stages and eventually die around 
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gastrulation (Beppu et al., 2000; Chu et al., 2004; Di-Gregorio et al., 2007; Lawson et al., 

1999; Sirard et al., 1998). However, the cause of this dysregulation has remained elusive, 

with the cell physiological events downstream of the disruption to BMP signalling being not 

fully investigated. There have been major experimental barriers to studying development 

across the peri-implantation period due to the small size of embryos at this stage and their 

inaccessibility during implantation. In recent years, these barriers have largely been lifted 

with the emergence of in vitro culture methods (Bedzhov et al., 2014b; Bedzhov and 

Zernicka-Goetz, 2014; Morris et al., 2012) and stem cell models (Beccari et al., 2018; 

Bedzhov and Zernicka-Goetz, 2014; Desbaillets et al., 2000; Harrison et al., 2017; Morgani et 

al., 2018; Sozen et al., 2018; van den Brink et al., 2020; Warmflash et al., 2014). Here we use 

these approaches to directly investigate the role of this critical signalling pathway during the 

blastocyst to egg cylinder transition utilizing complementary loss of function approaches. We 

find that in three BMP depletion strategies, blocking canonical BMP activity severely 

impaired the growth of ExE tissue. Our studies suggest that BMP signalling does not affect 

embryo remodelling at implantation, but is required for maintaining both embryonic and 

extra-embryonic tissue development soon after implantation (Fig 5D).  

 Lineage-specific stem cells are maintained in small numbers by specialized niches 

(Rossant, 2007). Self-renewal of these stem cells is vital for tissue maintenance and growth, 

generating progressively specialized progeny that ultimately yield the fully differentiated 

cells of the adult. Blastocyst-derived lineage-specific stem cells mimic mouse post-

implantation tissue and embryo organisation in vitro as shown previously by us and others 

(Beccari et al., 2018; Harrison et al., 2017; Sozen et al., 2018; ten Berge et al., 2008; van den 

Brink et al., 2020; van den Brink et al., 2014). In this study, we aimed specifically to 

investigate the consequences of BMP signalling on tissue organisation in their individual 3D 

stem cell-based platforms. To this end, we used ESCs and TSCs embedded in 3D Matrigel, 

which largely recapitulates the in vivo environment and provides a simplified platform to 

study the impacts of autocrine signalling on embryo tissues. To investigate how ExE cells 

become decreased in number following BMP inhibitor treatment, we examined the embryos 

and TSCs in 3D culture for their proliferation capacity. The TSC niche in the mouse is present 

within the polar TE before implantation, whereas after implantation the ExE fulfils this role. 

Correct proliferation, differentiation and apoptosis of this extra-embryonic lineage is fine-

tuned in response to cellular signalling, regulating stem cell maintenance and thereby tissue 

organisation (Tanaka et al., 1998). Correct proliferation, differentiation and apoptosis of this 

extra-embryonic lineage is fine-tuned in response to cellular signalling, regulating stem cell 

maintenance and thereby tissue organisation (Tanaka et al., 1998; Uy et al., 2002). Following 

BMP inhibition, we found evidence for decreased proliferation in TSCs in 3D culture, as 

judged by the mitotic index measured by H3S10-P staining. This indicates the absence of ExE 

is a consequence of the lack of TSC maintenance. Although BMP-depleted embryos showed 

a similar proportion of H3S10-P-positive cells as controls, they had less ExE cells in total. Less 

ExE cells was not due to differences in cell death (Fig. 4), but likely due to differences in cell 

proliferation rate. Given these findings, we propose that the improper development of ExE 
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in the absence of BMP activity is due to the loss of proliferative potential in the TSC 

population. Further analyses of proliferation dynamics are required to fortify this proposal.  

The ExE is not only essential for mammalian extra-embryonic placental formation, 

but also crucial for the survival of the embryo proper in utero. Previous reports stress a role 

for Bmp4 from the ExE in acting as a paracrine factor essential for EPI development after 

implantation, and for further patterning at gastrulation (Winnier et al., 1995; Yang et al., 

1998). We therefore suggest a requirement for BMP signalling in the EPI possibly through 

providing the physiological machinery to regulate autocrine-paracrine signal exchange 

between embryonic and extraembryonic tissues which would be ultimately essential in 

maintaining the embryonic EPI. However, given the limitations of our study, by which BMP 

inhibition is applied to the entire conceptus, targeted elimination of signalling activity in ExE 

tissue and its effects to the EPI remain to be determined. Additionally, beyond survival 

effects, our results indicate a role for BMP in regulating the cellular differentiation, with a 

lack of signalling promoting early differentiation of the 3D ESC rosettes. This supports 

previous observations on BMP signalling through Smads modulates lineage priming in ESCs 

in 2D culture (Gomes Fernandes et al., 2016). This stage specific effect of BMPs on EPI 

development suggests that in earlier developmental stages, Bmp/Smad activity is 

dispensable for the maintenance and survival of the EPI lineage, but that it might regulate 

differentiation. As development progresses, ectopic EPI cell death follows, possibly heralded 

by decreased development of the extra-embryonic tissues.  

The potential differences between Dorsomorphin, a small molecule, and Noggin, an 

extracellular ligand, were previously reported in different contexts, showing that small 

molecules permit more precise temporal control over BMP signalling, while Noggin shows 

slow effectiveness (Hao et al., 2008). Although we observed similar phenotype after both 

Noggin and Dorsomorphin treatments, the effect on the embryo growth appeared more 

pronounced upon Dorsomorphin treatment (Fig. 1C, G, H). This effect could reflect intrinsic 

differences between the small molecules and protein-based antagonists, and possibly results 

from the ability of the small molecule to rapidly penetrate the multiple cell layers of the 

embryo, while Noggin may not infiltrate cell layers as effectively. That said, a caveat to 

consider with pharmacologically mediated loss and gain of function experiments is the 

potential off-target effects (Strahle and Grabher, 2010). In addition, it was reported by some 

that Smad1/5/9 phosphorylation is absent in the ExE (Di-Gregorio et al., 2007; Yamamoto et 

al., 2009), while others support the notion that BMP signalling is active in extraembryonic 

tissues (Coucouvanis and Martin, 1999; Javier et al., 2012; Tremblay et al., 2001). Given that 

BMP receptors are expressed in the ExE (Mishina et al., 1995; Pijuan-Sala et al., 2019), a 

functional role of BMP signalling in this tissue before gastrulation is likely (Kishigami and 

Mishina, 2005).  Nevertheless, we cannot rule out possible indirect effects of BMP signalling 

and/or inter-lineage crosstalk for the phenotypes observed in this study. Further studies 

using knock-out strategies for specific BMP components, or the development of small 

molecules which are more selective for BMP signalling will be essential to clarify this point. 
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Although the exact mechanism by which disrupted ExE formation is not fully determined, 

our findings provide new insights into pre-to-post implantation developmental dynamics and 

suggest a critical role for BMP signalling in regulating this process. 

In conclusion, our results suggest multiple tissue-specific roles for BMP signalling 

during peri-implantation mouse embryo development. Our data indicated that BMP function 

within the ExE to maintain its proliferation via its TSCs niche; and in the EPI to mediate cell 

identity and survival. Overall, the observed defects in stem cell populations in both 

embryonic and extra-embryonic lineages result in abnormal tissue development at 

implantation/early post-implantation and may explain the consequent developmental failure 

at later developmental stages as described previously. Thus, combining analyses of in vitro 

cultured embryos and stem-cell models, has allowed us to uncover these early phenotypes, 

which may have been masked by the influence of maternal factors in the oviduct and uterus 

in in vivo studies.  

 
FIGURE LEGENDS 

Fig. 1. Blocking BMP activity in embryos at pre- to post-implantation transition (A) Protocol 

for peri-implantation culture and development in mouse. Time scale above: development in 

vivo; below: equivalent developmental timings in vitro. (B) A representative image of E4.75 

blastocyst stage embryo at 0h of IVC, and in vitro developed egg cylinder at 48h of IVC. 

Asterisks mark EPI. (C) Morphological appearances of in vitro cultured embryos in each 

condition. Oct4 for EPI; Gata4 for VE. (D) Egg cylinder phenotypes 48h after Noggin 

treatments. Nog 300, 300ng/ml
-1

; Nog 500, 500ng/ml
-1

; Nog 800, 800ng/ml
-1

 (E) 

Developmental frequency for blastocyst developed to egg cylinder in 48h of IVC culture. Nog 

300, 300ng/ml
-1

; Nog 500, 500ng/ml
-1

; Nog 800, 800ng/ml
-1

; Dorso 0.5, 0.5µM/mL; Dorso 1, 

1µM/mL; SB 5, 5µM/mL; SB 10, 10µM/mL. (F-H) Relative number of cells in each lineage 

compared with controls (n=30) in embryos treated with (F) Noggin (300ng/ml
-1

, n=25; 

500ng/ml
-1

, n=32; 800ng/ml
-1

, n=22), (G) Dorsomorphin (0.5µM/mL, n=29; 1µM/mL, n=36) 

(H) SB203580 (5µM/mL, n=34; 10µM/mL, n=36), respectively. *P<0.05, **P<0.01, 

***P=0.001 (Student’s t-test). All error bars=SEM. All scale bars=20µm.  

Fig. 2. Impaired ExE development a result of the lack of TSCs maintenance. (A) Phenotypes 

of egg cylinders 48h after Dorsomorphin treatments (i) decreased ExE region (top), (ii) poorly 

defined ExE region (middle), (iii) no ExE region at all (bottom). White dashed lines mark 

outline the ExE compartment where the measurement was performed. (B) Percentages of 

each phenotype of ExE observed in vitro cultured egg cylinders 48h after Dorsomorphin 

treatment (0.5µM/mL). At least 20 embryos analysed per group. (C) TSCs were cultured on 

2D-monolayer-culture conditions under serum-free (defined) or serum-containing 

conditions. Scale bars=20µm. Quantification on the right shows P-Smad1/5/9 

immunofluorescence intensity in TSCs. P-Smad1/5/9 expression in TSCs found increased in 

Serum-containing condition and upon BMP4 treatment. P-Smad1/5/9 intensity was 
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normalised to the DNA-channel (DAPI) and a mean average was taken. ***P=0.001 (ANOVA 

test), n=35 per group. Error Bars= SEM. (D) qRT-PCR analysis of the expression of BMP 

signalling target genes (Id1, Id2, Id3) in TSCs grown in different conditions. **P<0.01, 

***P=0.001 (Student’s t-test) (3 separate experiments). Error bars=SEM. (E) Scheme of 

protocol to 3D-embeded TSCs in Matrigel. (F) An example of polarised TSCs structure 48h 

after control and dorsomorphin (0.1µM/mL) conditions. (G) Bmpr1 expression in polarised 

TSCs structure (H) Phenotypes of TSC structures in 3D 72h after Dorsomorphin treatments 

(0.1µM/mL; n=50): (i) cavitated structure with decreased cell number (left) (ii) non-cavitated 

and poorly organised structures (middle), and (iii) cells undergoing cell death (right). (I) 

Percentages of each phenotype of TSC structures observed 72h after Dorsomorphin 

treatment in Matrigel (top) and number of cells per structure (bottom). *P<0.05, **P<0.01, 

***P=0.001 (Student’s t-test). All error bars=SEM. All scale bars=20µm.  

Fig. 3. Proliferation assessment of 3D ESC/TSC structures and in vitro cultured embryos. (A, 

B) Quantification showing the number of cells positive for H3S10-P expression in ESC 

structures and (C, D) TSC structures. At least 20 structures analysed for per group. **P<0.01 

(Student’s t-test). (E) Expression of H3S10-P in embryos developed in vitro. (F) Quantification 

showing the number of cells positive for H3S10-P expression in each lineage in control (n=9), 

Noggin (500ng/ml
-1

, n=10), dorsomorphin (1µM/mL, n=10), SB203580 (5µM/mL, n=9) 

treatment for 48h. Error Bars= SEM. Scale bars=20µm. (G) Time-course quantification of cell 

number in EPI (Oct4) and ExE (Tfap2c) lineages in the developing embryo. Graphs show 

relative number of cells in each lineage after 24, 36 and 48h IVC compared with controls in 

embryos treated with (F) Noggin (500ng/ml
-1

), (G) Dorsomorphin (1µM/mL) (H) SB203580 

(5µM/mL), respectively. N=6 per group. *P<0.05, **P<0.01, ***P=0.001 (Student’s t-test). 

Error bars=SEM.  

Fig. 4. Cell death in BMP-inhibited embryos. (A) Cleaved-caspase-3 expression at 24h, 36h 

and 48h time-points during pre-to-postimplantation development in the presence of Noggin 

(500ng/ml
-1

), Dorsomorphin (1µM/mL) or SB203580 (5µM/mL). (B) Quantifications showing 

the percentage of cells positive for cleaved-caspase-3 expression in each lineage at 24 (top), 

36 (middle), 48h (bottom) in control and inhibitor treatments (at least 6 embryos analysed 

per group) *P<0.05, ***P=0.001 (ANOVA followed by Tukey test). Error bars=SEM. (C) Still 

images of time-lapse recording of an embryo forming egg-cylinder in vitro. Dying cells are 

marked by SYTOX, a red cell death reporter (control n=11; Dorsomorphin n=13). White 

dashed-line marks outline of the embryo, yellow dashed-line marks the site of the emerging 

proamniotic cavity. Scale bars=20µm. (D) Cleaved-caspase-3 expression in 3D ESC rosettes in 

control and dorsomorphin treated group. Quantification shows cleaved caspase-3-positive 

apoptotic cells in the ESC rosettes (n=28 per group). ****P=0.0001 (Student’s t-test). All 

error bars=SEM. All scale bars=20µm.  

Fig. 5. BMP inhibition does not affect EPI morphological remodelling but triggers cell 

differentiation in ESC rosettes. (A) Formation of polarized rosettes in control versus BMP-
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inhibitor treated ESCs cultured in 3D Matrigel. The rate of self-organization in ESCs was 

examined at 24, 36, 48h. Scale bars=20µm. (B) Still images of time-lapse recording of in vitro 

cultured CAG-GFP* embryo. Note that a single cavity emerges from the center of the EPI 

rosette, marked by yellow dashed line. Scale bars=20µm. *CAG promoter-driven transgenes 

become silenced in extraembryonic lineages in this particular line (Rhee et al. 2006; Griswold 

et al. 2011, Abe and Fujimora, 2013, Bedzhov and Zernicka-Goetz, 2014). (C-D) qRT-PCR 

analysis of Id genes and differentiation-related genes (Acsl4, Dll3, Fgf5, Otx2) in ESCs 

rosettes. *P<0.05, **P<0.01, ***P=0.001 (ANOVA followed by Tukey test) (5 experiment per 

group). Error Bars= SEM. (E) Illustration shows roles of BMP signalling in pre-to-post-

implantation development. 

 

MATERIALS AND METHODS 

Embryo culture through peri-implantation 

Embryos were cultured as described in Bedzhov et al, 2014 (Bedzhov et al., 2014b). 

Blastocysts were recovered from the mother at 4.5 days post coitum by uterine flushing with 

M2 medium. Recovered blastocysts then had their mural trophectoderm manually dissected 

away, before blastocysts were plated in ibiTreat microscopy plastic µ-plates (Ibidi) and 

cultured in IVC1 medium (Advanced DMEM/F12 supplemented with 20% heat-inactivated 

FBS, 2 mM l-glutamine, penicillin-streptomycin (25 µg/ml), 1× ITS-X (10 mg/l insulin, 5.5 mg/l 

transferrin, 0.0067 mg/l sodium selenite and 2 mg/l ethanolamine), 8 nM β-estradiol, 200 

ng/ml progesterone and 25 µM N-acetyl-l-cysteine). After 24h in culture, the medium was 

changed to IVC2 medium (Advanced DMEM/F12 supplemented with 30% KSR, 2 mM l-

glutamine, penicillin-streptomycin (25 µg/ml), 1× ITS-X (10 mg/l insulin, 5.5 mg/l transferrin, 

0.0067 mg/l sodium selenite and 2 mg/l ethanolamine), 8 nM β-estradiol, 200 ng/ml 

progesterone and 25 µM N-acetyl-l-cysteine).  

Post-implantation embryo recovery and culture 

4- to 6-week-old F1 mice from the C57Bl6/CBA crosses were naturally mated and sacrificed 

at midday after 5 days post-coitum. The uterus was recovered and embryos were manually 

dissected from deciduae in M2 medium using fine forceps. Following the recovery embryos 

cultured in IVC2 medium for 24h. 

Stem cell culture 

ESCs were cultured at 37˚C and 5% CO2 on gelatinized tissue-culture grade plates and 

passaged once confluent. Cells were cultured in ‘ES medium’ (DMEM with 15% FBS, 2mM L-

glutamine, 0.1mM 2-ME, 0.1mM NEAA, 1mM sodium pyruvate, and 1% penicillin-

streptomycin) supplemented with PD0325901 (1uM), CHIR99021 (3uM) (2i) and leukaemia 

inhibitory factor (0.1mM, LIF)). TSCs were cultured at 37˚C and 5% CO2, in TS medium (RPMI 

1640 (Sigma) with 20% FBS, 2mM L-glutamine, 0.1mM 2-ME, 1mM sodium pyruvate, and 1% 

penicillin-streptomycin), plus FGF4 (Peprotech) and heparin (Sigma)) in the presence of 
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inactivated DR4 MEFs. For the purpose of immunoflourescence staining on 2D-monolayer-

cell-culture and qRT-PCR experiments, TSCs grown in MEF-conditioned TS medium in order 

to avoid additional signal/mRNA from MEF cells. Cells were passaged when wells became 

80% confluent.  

Cell Lines used in the study 

All experiments were performed using E14 or 129 mouse ES cells, wild-type TS cells , and 

TS_EGFP cells (Tanaka et al., 1998). Wild type TS cells derived in M.Zernicka-Goetz’s lab 

from CD1 mouse with following the protocol by (Tanaka, 2006). 

 
‘3D embedded’ culture in Matrigel 

ES or TS cell colonies were dissociated to single cells by incubation with 0.05% trypsin-EDTA 

at 37˚C. Cells were pelleted by centrifugation for 5 min/1,000 rpm, washed with PBS, and re-

pelleted. The pellet was re-suspended in Matrigel (BD, 356230). The cell suspension was 

plated on ibiTreat microscopy plastic µ-plates (Ibidi) and incubated at 37˚C until the Matrigel 

solidified. The plate was then filled with pre-warmed N2B27 medium for ES cells; TS medium 

for TS cells. Cells were cultured at 37˚C and 5% CO2.  

qRT–PCR for analysis 

Total RNA was extracted from cells using Trizol reagent as per the manufacturer’s 

instructions (Ambion). cDNA synthesis was performed with 1 µg of total RNA according to 

the manufacturer’s instructions (Applied Biosystems). The amounts of mRNA were 

measured using SYBR Green PCR Master Mix (Ambion). Relative levels of transcript 

expression were assessed by the ΔΔCt method, with Gapdh as an endogenous control. For 

qRT-PCR primers used, see Supplementary Data Table 2. 

siRNA Transfection 

siRNA was transfected using LipofectAMINE RNAiMAX (Invitrogen) according to the 

manufacturer’s instructions. The siRNA sequences are as follows: siSmad5 5'-

ACGTCATACATTTACATTTAA-3'. Transfected TSCs were cultured for 36h at 37˚C and 5% CO2, 

in MEF-conditioned TS medium. For the confirmation of knockdown, cells were harvested 

36h after siRNA transfections. Total RNA extraction and cDNA synthesis were performed as 

explained above. Relative levels of transcript expression were assessed by the ΔΔCt method, 

with Gapdh as an endogenous control.  

Immunofluorescence  

Cells/embryos were fixed with 4% paraformaldehyde for 20 mins at room-temperature, then 

washed in PBS. Permeabilization was performed with 0.3% Triton-X-100, 0.1% Glycin in PBS 

for 15 minutes at room-temperature. Primary antibody incubation was performed overnight 

at 4˚C. The following day, cells were washed, then incubated overnight in secondary 

antibody at 4˚C. DAPI in PBS (5mg/ml) was added prior to confocal imaging. For antibodies 

and dilutions used, see Supplementary Data Table 1. 

Time-Lapse Imaging 

Jo
urn

al 
Pre-

pro
of



 13

Confocal time-lapse imaging during in vitro culture was performed using spinning-disc 

microscope system (Intelligent Imaging Innovations). The embryos were imaged every 15 or 

30 min in 100 mm image stacks of 8 µm z-planes. Analysis of cell death in the developing 

egg-cylinder was carried out using SYTOX Red nucleic acid stain (Life technologies) according 

to the manufacturer’s instructions. Images were processed using Slidebook 5.0 (Intelligent 

Imaging Innovations)  

Confocal Microscopy Imaging, Processing and Analysis 

All images were acquired using a Leica SP5 or SP8 confocal microscope, and all analyses were 

carried out using open-source image analysis software ‘Fiji’.  

Statistics 

Statistical tests were performed on GraphPad Prism 7.0 software for Windows. Data were 

checked for normal distribution and equal variances before each parametric statistical test 

was performed. Error bars represent standard error of the mean in all cases, unless 

otherwise specified. Figure legends indicate the number of independent experiments 

performed in each analysis. 
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Supplementary	table	1- Antibodies	used	in	this	study

Antibody	(species) Vendor Number Dilution

Oct 3/4	(mouse) Santa	cruz sc-5279 1:200

Tbr2/Eomes (rabbit) Abcam ab23345 1:400

aPKC (rabbit) Santa	cruz sc-17781 1:200

Podocalyxin (rat) R&D	systems MAB1556 1:400

Cdx2	(mouse) Launch	diagnostics MU392-UC 1:200

GFP (rat) Nacalai biochemicals 04404-84 1:2000

Tfap2c	(rabbit) Santa	cruz sc-8977 1:200

Elf5	(goat) Santa	cruz sc-9645 1:200

H3S10-P Cell signalling	technologies 9701 1:400

Phospho-p38 MAPK	(rabbit) Cell	signalling	technologies 9211 1:200

Phospho-SMAD	1/5/9 (rabbit) Cell	signalling	technologies 13820P 1:100

Gata4	(Goat) Santa	cruz sc-1237 1:200

Cleaved caspase-3	(rabbit) Cell	signalling	technologies #9664 1:200

F-actin	(Phalloidin 488) Life	Technologies	(Thermofisher scientific) A12379 1:1000

Alexa	488	(Donkey	anti-rat) Life	Technologies	(Thermofisher scientific) A21208 1:500

Alexa	568	(Donkey	anti-mouse) Life	Technologies	(Thermofisher scientific) A10037 1:500

Alexa	647	(Donkey	anti-rabbit) Life	Technologies	(Thermofisher scientific) A31573 1:500

Alexa	647	(Donkey	anti-goat) Life	Technologies	(Thermofisher scientific) A21447 1:500

Antibody	(species) Vendor Number Dilution

Oct 3/4	(mouse) Santa	cruz sc-5279 1:200

Tbr2/Eomes (rabbit) Abcam ab23345 1:400

aPKC (rabbit) Santa	cruz sc-17781 1:200

Podocalyxin (rat) R&D	systems MAB1556 1:400

Cdx2	(mouse) Launch	diagnostics MU392-UC 1:200

GFP (rat) Nacalai biochemicals 04404-84 1:2000

Tfap2c	(rabbit) Santa	cruz sc-8977 1:200

Elf5	(goat) Santa	cruz Sc-9645 1:200

H3S10-P	(rabbit) Cell	signalling	technologies 9701 1:400

BmpR1a	(rabbit) Biorbyt orb420681 1:200

Phospho-p38 MAPK	(rabbit) Cell	signalling	technologies 9211 1:200

Phospho-SMAD	1/5/9 (rabbit) Cell	signalling	technologies 13820P 1:100

Gata4	(Goat) Santa	cruz sc-1237 1:200

Cleaved caspase-3	(rabbit) Cell	signalling	technologies #9664 1:200

F-actin	(Phalloidin 488) Life	Technologies	(Thermofisher scientific) A12379 1:1000

Alexa	488	(Donkey	anti-rat) Life	Technologies	(Thermofisher scientific) A21208 1:500

Alexa	568	(Donkey	anti-mouse) Life	Technologies	(Thermofisher scientific) A10037 1:500

Alexa	647	(Donkey	anti-rabbit) Life	Technologies	(Thermofisher scientific) A31573 1:500

Alexa	647	(Donkey	anti-goat) Life	Technologies	(Thermofisher scientific) A21447 1:500
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Supplementary	table	2- qPCR primers used	in	this	study

Gene Forward (5'	to	3') Reverse (5'	to	3')

Id1
CCTAGCTGTTCGCTGAAGGC CTCCGACAGACCAAGTACCAC

Gata3 GGGTTCGGATGTAAGTCGAG CCACAGTGGGGTAGAGGTTG

Bmp4 TCTAGAGGTCCCCAGAAGCA AGGAATCATGGTGTCTTGACAGA

GAPDH CGTATTGGGCGCCTGGTCAC ATGATGACCCTTTTGGCTCC

Id2 TCCGGTGAGGTCCGTTAGG CAGACTCATCGGGTCGTCC

Id3 CTGTCGGAACGTAGCCTGG GTGGTTCATGTCGTCCAAGAG
Acsl4 CCTGAGGGGCTTGAAATTC GTTGGTCTACTTGGAGGAACG

Dll3 GCTGGTGTCTTCGAGCTACAA TGCTCCGTATAGACCGGGAC

Fgf5 AACTCCATGCAAGTGCCAAAT CGGACGCATAGGTATTATAGCTG

Otx2 TATCTAAAGCAACCGCCTTACG GCCCTAGTAAATGTCGTCCTCTC

Bmpr1a GCGAACTATTGCCAAACAG GAGGTGGCACAGACCACAAG

Bmpr1b GACACTCCCATTCCTCATC GCTATTGTCCTTTGGACCAG

BmprII AATCAAGAACGGCTGTGTGCA CATGCTGTGAAGACCCTGTTT

Smad1 AGCCCAACAGCCACCCGT GCAACTGCCTGAACATCTCCT

Smad5 GCTGAACCCCATTTCTTCTG CGTTCCAGGTTAAGATCAATGC

Smad8 TCCAGCAGTCTCTCTGTCCG GTGCTGGGGTTCCTCGTAG

Smad4 CACTGCCTTCAAAAGATCAAAATTAC TGGTGTATTTGTTATGAGCATATTGTCCAT

Gene Forward (5'	to	3') Reverse (5'	to	3')

Cdx2 AGTGAGCTGGCTGCCACACT GCTGCTGCTGCTTCTTCTTGA

Eomes TCGCTGTGACGGCCTACCAA	 AGGGGAATCCGTGGGAGATGGA

Elf5 ATTCGCTCGCAAGGTTACTCC GGATGCCACAGTTCTCTTCAGG

Id1 CCTAGCTGTTCGCTGAAGGC CTCCGACAGACCAAGTACCAC

Id2 TCCGGTGAGGTCCGTTAGG CAGACTCATCGGGTCGTCC

Id3 CTGTCGGAACGTAGCCTGG GTGGTTCATGTCGTCCAAGAG

GAPDH CGTATTGGGCGCCTGGTCAC ATGATGACCCTTTTGGCTCC

Tfap2c TGCCCACGTCACTCTCCTCA TCCGTCCCCCAAGATGTGGT

Gata3 GGGTTCGGATGTAAGTCGAG CCACAGTGGGGTAGAGGTTG

Ascl4 CCTGAGGGGCTTGAAATTC GTTGGTCTACTTGGAGGAACG

Dll3 GCTGGTGTCTTCGAGCTACAA TGCTCCGTATAGACCGGGAC

Fgf5 AACTCCATGCAAGTGCCAAAT CGGACGCATAGGTATTATAGCTG

Otx2 TATCTAAAGCAACCGCCTTACG GCCCTAGTAAATGTCGTCCTCTC
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• Embryo remodelling during pre- to post-implantation transition occurs normally in 

the absence of BMP. 

• BMP is required for maintaining both embryonic and extra-embryonic tissue 

development soon after implantation. 

• Loss of canonical BMP activity compromises extra-embryonic ectoderm 

development via decreasing the proliferative potential of TSCs. 

• The lack of BMP signalling promotes early differentiation of 3D ESC rosettes and 

increases cell death in EPI. 
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