
Technology

Inducible Stem-Cell-Derived Embryos Capture

Mouse Morphogenetic Events In Vitro
Graphical Abstract
Highlights
d Stem cells generate mouse-embryo-like structures with

improved potential

d These structures undertake anterior visceral endoderm

formation and gastrulation

d Single-cell sequencing shows improved resemblance to

mouse embryo
Amadei et al., 2021, Developmental Cell 56, 1–17
February 8, 2021 ª 2020 The Authors. Published by Elsevier Inc
https://doi.org/10.1016/j.devcel.2020.12.004
Authors

Gianluca Amadei, Kasey Y.C. Lau,

Joachim De Jonghe, ...,

Christos Kyprianou, Florian Hollfelder,

Magdalena Zernicka-Goetz

Correspondence
mz205@cam.ac.uk

In Brief

Amadei et al. have generated stem-cell-

based structures that resemble mouse

post-implantation embryos and have the

potential to form the anterior-posterior

axis and undergo gastrulation in vitro.

Single-cell sequencing shows gene-

expression patterns similar to those of the

natural embryo at a comparable stage of

development.
.
ll

mailto:mz205@cam.ac.�uk
https://doi.org/10.1016/j.devcel.2020.12.004


OPEN ACCESS

Please cite this article in press as: Amadei et al., Inducible Stem-Cell-Derived Embryos Capture Mouse Morphogenetic Events In Vitro, Developmental
Cell (2020), https://doi.org/10.1016/j.devcel.2020.12.004
ll
Technology

Inducible Stem-Cell-Derived Embryos
Capture Mouse Morphogenetic Events In Vitro
Gianluca Amadei,1 Kasey Y.C. Lau,1 Joachim De Jonghe,2 Carlos W. Gantner,1 Berna Sozen,3,4 Christopher Chan,1

Meng Zhu,1,5 Christos Kyprianou,1 Florian Hollfelder,2 and Magdalena Zernicka-Goetz1,3,6,*
1Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
2Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
3Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
4Present address: Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
5Present address: Genetics Department, Harvard Medical School, Harvard, Boston, MA 02215, USA
6Lead Contact

*Correspondence: mz205@cam.ac.uk
https://doi.org/10.1016/j.devcel.2020.12.004
Summary
The development ofmouse embryos can be partially recapitulated by combining embryonic stem cells (ESCs),
trophoblast stem cells (TS), and extra-embryonic endoderm (XEN) stem cells to generate embryo-like struc-
tures called ETX embryos. Although ETX embryos transcriptionally capture the mouse gastrula, their ability
to recapitulate complex morphogenic events such as gastrulation is limited, possibly due to the limited poten-
tial of XEN cells. To address this, we generated ESCs transiently expressing transcription factor Gata4, which
drives the extra-embryonic endoderm fate, and combined them with ESCs and TS cells to generate induced
ETX embryos (iETX embryos). We show that iETX embryos establish a robust anterior signaling center that mi-
grates unilaterally to break embryo symmetry. Furthermore, iETX embryos gastrulate generating embryonic
and extra-embryonic mesoderm and definitive endoderm. Our findings reveal that replacement of XEN cells
with ESCs transiently expressing Gata4 endows iETX embryos with greater developmental potential, thus
enabling the study of the establishment of anterior-posterior patterning and gastrulation in an in vitro system.
Introduction

Mouse embryo development relies on interactions between the

epiblast (EPI), the extra-embryonic ectoderm (ExE), and the

visceral endoderm (VE), which are the respective precursors of

the embryo proper, the placenta, and the yolk sac. These tissue

interactions transform the embryo from the blastocyst into the

egg cylinder: the EPI and the ExE polarize and open two luminal

cavities, which, eventually, fuse to form the proamniotic cavity

(Tam and Loebel, 2007; Bedzhov and Zernicka-Goetz, 2014;

Christodoulou et al., 2018), while VE grows to envelop embryonic

and extra-embryonic tissues (Christodoulou et al., 2019). The

anterior-posterior axis is established by a group of VE cells that

migrates unilaterally to protect anterior EPI fromposteriorizing sig-

nals by secreting Dkk1, Cerl, and Lefty1, which antagonize Wnt,

Bmp4, and Nodal signaling (Thomas et al., 1998; Weber et al.,

1999; Stower and Srinivas, 2017). The anterior EPI later upregu-

lates the expression of Sox1 and commits to become neuroecto-

derm and surface ectoderm (Bylund et al., 2003; Kan et al., 2004;

Zhao et al., 2004).Mesodermal identity in the EPI ismarked by the

upregulation of Brachyury (Bry) at the EPI/ExE boundary, followed

by the epithelial-to-mesenchymal transition of cells that egress

through the primitive streak (PS) to form all three germ layers (Riv-

era-Pérez and Magnuson, 2005; Tam and Loebel, 2007).
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Over recent years, stem cell lines derived from mouse embry-

onic and extra-embryonic tissues have become powerful tools to

complement embryological studies (Evans and Kaufman, 1981;

Tanaka et al., 1998; Kunath et al., 2005). Their ability to capture

embryogenesis, however, is limited since each cell type is

cultured in isolation and on their own do not acquire the

morphology of embryos, hindering themodeling of the tissue-tis-

sue interactions and signaling that are crucial for embryo

patterning and morphogenesis in vivo.

To address this, we have developed a stem-cell-based model

of embryonic development by combining ES, TS, and extra-em-

bryo endoderm (XEN) stem cells into structures called ETX

embryos (Sozen et al., 2018), and our results have been indepen-

dently validated (Zhang et al., 2019). These ETX embryos closely

resemble egg-cylinder-stage embryos at the morphological and

transcriptional level. Yet, complex developmental events such

as gastrulation occur only to a limited extent in this system,

thus suggesting the need to improve it in order to capture the

morphogenetic events occurring during natural embryo

development.

Design
To explain the limits of the ETX-embryo system, we reasoned

that one or more cell types used for ETXembryo generation do
February 8, 2021 ª 2020 The Authors. Published by Elsevier Inc. 1
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Figure 1. Treated CAG-tetOG4 ESCs Express Endodermal Markers and Contribute to Primitive Endoderm (PrEn) in Chimeras

(A)Gata4mRNA expression in CAG-tetOG4 ESCs in N2B27 2iLIF (left, n = 4), FC 2iLIF (center, n = 4), and IDG 2iLIF (right, n = 3) after 6 h Dox treatment or control.

Error bars, SD.

(B) Top panel: CAG-tetOG4 ESC aggregates in control condition (top row) or Dox (bottom row), analyzed after 24 h for Gata4 (green, Alexa488), Sox17 (red,

Alexa647), mCherry (gray), and DAPI (blue) (control, 49/49 structures; Dox, 37/37 structures; n = 3 each). Scale bar, 20 mm. Bottom panel: same as top, analyzed

for Gata6 (green, Alexa488), Oct4 (red, Alexa647), mCherry and Podxl (gray, Alexa568), and DAPI (blue) (control, 49/52 structures; Dox, 45/45 structures; n = 3

each). Scale bar, 20 mm control and 15 mm Dox. Endogenous CAG-GFP in the green channel of control but downregulated in Dox (see Figure S1A). Below,

quantification of the percentage of cells with the specified marker combinations in control and Dox aggregates. In the graphs, each dot is an aggregate.

(C) Schematic of chimera aggregation: CAG-tetOG4 ESCs treated with Dox for 6 h or untreated and aggregated with E2.5 wild-type embryos. Contribution to

either EPI or PrEn was assessed at E4.5. TE, trophectoderm.

(D) Chimeras as in (C) analyzed for Sox17 (gray), CAG-GFP (green, with aGFP), and DAPI (blue). Contribution to PrEn with Dox-treated cells (bottom rows): 17/43

embryos from 3 females, 39%. Contribution to EPI of control cells (top rows): 22/22 embryos from 3 females. Scale and zoomed scale: 20 mm. Arrows, Sox17/

CAG-GFP+ve cells; arrowhead, Sox17+ve/CAG-GFP-ve cells. In the graph, percentage of inner cell mass cells with PrEn identity was quantified. Each dot is an

embryo.

(legend continued on next page)
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not have the correct developmental potential to recapitulate em-

bryo development. Indeed, XEN cells were reported to be more

similar to parietal endoderm than to primitive endoderm (PrEn) or

VE (Paca et al., 2012; Moerkamp et al., 2013), pointing to a need

to replace XEN cells as a partner in the ETX embryo.

As induction of two transcription factors Gata4 or Gata6 in

ESCs is sufficient to differentiate them toward endoderm (Shi-

mosato et al., 2007; Schröter et al., 2015; Mathew et al., 2019),

we hypothesized that such ‘‘induced’’ endodermal cells could

functionally replace XEN cells. Here, we test this hypothesis by

combining ES and TS cells with ESCs transiently expressing

Gata4 in response to Doxycycline (Dox). The resulting induced

ETX embryos (iETX embryos), in addition to expressing canoni-

cal post-implantation markers, can recapitulate complex

morphogenetic events leading to formation and migration of

the anterior signaling center and gastrulation.
Results

Induction of Gata4 in ES Cells Leads to Formation of
Primitive Endoderm (PrEn) Lineage
To test whether replacing XEN cells with a cell typemore similar

to PrEn or VE could increase the developmental potential of

ETX embryos, we modified our CAG-GFP/tetO-mCherry ES

line (showing constitutive membrane GFP and transient

mCherry expression following Dox-treatment) to transiently ex-

press Gata4 in response to Dox (CAG-GFP/tetO-mCherry/

tetO-Gata4 ESCs, CAG-tetOG4 hereafter). We confirmed

robust expression of Gata4 mRNA after 6 h of Dox-treatment,

independently of the ES culture medium (Figure 1A). Gata4 in-

duction was necessary and sufficient for expression of endo-

dermal proteins Gata4, Sox17, and Gata6 1 day after cell seed-

ing, but Oct4 expression was retained at this time (Figure 1B);

also note the CAG-GFP downregulation upon Gata4 induction,

Figure S1A).

To test the effect of Gata4 overexpression on cell fate, we

aggregated 8-cell stage embryos with ESCs and found that un-

treated CAG-tetOG4 ESCs contributed exclusively to the EPI,

while Dox-treated CAG-tetOG4 ESCs could contribute to the

PrEn (Figures 1C and 1D, 63 embryos). These results indicate

that transient Gata4 expression is sufficient to change the poten-

tial of ESCs from EPI to PrEn lineage.

As an additional test to determine whether the CAG-tetOG4

ESCs could function as ‘‘building blocks’’ for ETX embryos, we

generated ES aggregates using CAG-tetOG4 ESCs by

combining (1) solely ESCs in control conditions (no Dox), (2)

solely ESCs treated with Dox, or (3) Dox-treated and untreated

ESCs in a 50:50 ratio and assessed cell fate after 3 days

in vitro. In untreated aggregates, the ESCsmaintained their iden-

tity and expressed Oct4 with a few exceptions (2/43 structures

scored). We did not observe expression of Gata6 (Figure 1E),

indicating that without Dox-treatment, upregulation of endo-

dermal markers was extremely rare. Podxl distribution was scat-
(E) CAG-tetOG4 ESC aggregates generated by combining cells either grown in co

and Dox-treated cells (bottom) and analyzed after 72 h for Gata6 (green), Oct4 (re

60/65; n = 3 each. Scale bar, 20 mm. *p < 0.05,**p < 0.01, ****p < 0.0001, ns, non

See also Figure S1.
tered, indicating a lack of polarization and lumenogenesis (Shah-

bazi et al., 2017). In contrast, aggregates of Dox-treated ESCs

completely downregulated Oct4 and induced Gata6 (55/56

structures scored). Podxl was on the outside of these aggre-

gates in a continuous layer, suggesting that these structures

were polarized but they did not undertake lumenogenesis (Fig-

ure 1E). Lack of Oct4 indicated that all cells failed to retain an

ESC identity. Finally, aggregates generated by combining

treated and untreated cells in a 50:50 ratio had an outer layer

of Gata6-expressing cells and an inner compartment of Oct4-ex-

pressing ESCs. These aggregates underwent polarization and

lumenogenesis and their morphology was reminiscent of the

post-implantation EPI surrounded by VE (VE-like layer) (60/65

structures scored) (Figure 1E).

A lineage-tracing experiment with Dox-treated CAG-tetOG4

ESCs and unlabeled ESCs showed that the VE-like layer ex-

pressed CAG-GFP, confirming that it was generated by the

Dox-treated cells with the Gata4 transgene (Figures S1B and

S1C). These results suggest that combining Dox-treated and un-

treated CAG-tetOG4 ESCs leads to the generation of self-organ-

ising aggregates containing VE-like and EPI-like compartments,

a crucial building block in ETX embryogenesis.
iETX Embryos Self-Assemble and Express Canonical
Markers of Post-implantation Embryos
To test whether XEN cells could be functionally replaced by

CAG-tetOG4 ESCs to generate ETX embryos, we combined

wild-type CAG-GFP ESCs, Dox-treated CAG-tetOG4 cells, and

TS cells in AggreWells (Figure 2A). After 24 h, cells had aggre-

gated but no clear organization could be discerned. After 48 h,

aggregates had fully compacted and increased in size. At 72 h,

aggregates began elongation and developed an egg-cylinder-

like morphology reminiscent of ETX and natural post-implanta-

tion embryos (Sozen et al., 2018). At 96 and 120 h, the structures

outgrew the microwells, requiring transfer to a bigger culture

vessel. From 72-h onward, we could observe formation of the

VE-like layer, encompassing the ES and the TS cells, which

had formed distinct abutting compartments. Lumen formation

in ES and TS cells was observed at 72 h, and at 96 h the lumens

merged. Because these ETX embryoswere generated by replac-

ing XEN cells with Dox-treated ‘‘induced’’ CAG-tetOG4 cells, we

termed them iETX embryos.

To calculate the formation efficiency of iETX embryos, we

collected the whole contents of several wells 3 days and

4 days after cell seeding and counted the number of structures

containing an epithelial, GFP-expressing ES compartment,

segregated from an unlabeled TS compartment, both sur-

rounded by a layer of cells, over the total number of structures

(Figures 2B and S2A). At day 3, over 30% of the structures

showed correct morphology, but at day 4, this fraction had

decreased to 20% (Figure 2C), likely because some structures

failed to develop properly between days 3 and 4 (Figure 2B).

CAG-GFP expression was downregulated after Dox-treatment
ntrol (top row), or Dox-treated cells for 6 hr (middle) or a 50:50mixture of control

d), Podxl (gray), and DAPI (blue). Control: 41/43 aggregates, Dox: 55/56, 50:50:

significant.
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Figure 2. iETX Embryos Express Canonical Post-implantation Embryo Markers

(A) Top: Time course and schematic of iETX embryo generation from cell seeding on day 0 to day 5. Bottom: Images of a representative iETX embryos at specific

time points. Scale bar, 100 mm.

(B) The contents of a single AggreWell were collected at day 4 to quantify formation efficiency of iETX embryos. ES compartment and VE-like layer express CAG-

GFP; the TS compartment is unlabeled. Scale bar, 200 mm. Panels (right) highlight representative structures such as well-formed iETX embryos (1 and 2); an

inflated iETX embryo (3); a well-formed iETX embryo in the process of inflating (4). Scale bar, 150 mm.

(C) Quantification of iETX embryo formation at either 3 or 4 days. Day 3 = 1,542/4,187 structures (n = 4); day 4 = 960/4,410 structures (n = 4). Error bar: SD.

(D) Time-lapse still images of iETX embryo formation over the course of 67 h. Top: The ES compartment and VE-like layer express CAG-GFP; TS compartment is

unlabeled. Bottom, CAG-GFP ESCs alone (gray). White arrowheads highlight TS cells, yellow arrow and asterisk the forming ES lumen. Six examples. Scale

bar, 30 mm.

(legend continued on next page)
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of the CAG-tetOG4 ESCs in the VE-like layer (Figure S2B), as in

natural embryos (Bedzhov and Zernicka-Goetz, 2014). For the

remaining experiments, we restricted our analyses to iETX em-

bryos with correct morphology.

To follow iETX development, we seeded our cells in PEG-hy-

drogel plates to monitor iETX embryogenesis by live imaging

(Figures 2D and S2C). After 24 h, cells compacted and formed

an aggregate. Between 24 and 48 h, a CAG-GFP ES compart-

ment became surrounded by a thin layer of cells; at 24 h the

TS cells formed a very small layer or clump in the structure.

The TS compartment emerged between 48 and 72 h, and the

layer surrounding both ES and TS compartments became

thicker andmore prominent. The ES compartment underwent lu-

menogenesis between 60 to 67 h. At 72 h and onward the struc-

ture elongated until it grew larger than the diameter of the well.

Similar to our observations with ETX embryos (Sozen et al.,

2018), iETX embryos developed to strongly resemble mouse

post-implantation embryos. The VE-like layer, unlike the ES

compartment, was mCherry positive for the first 24 h, indicating

that it had been generated by Dox-treated CAG-tetOG4 cells

(Figures 2E and S2D). Transient mCherry disappeared by 72 h

(Figure S2E).

To ascertain whether iETX embryos expressed the appro-

priate post-implantation markers, we analyzed canonical lineage

markers 4 days after cell plating. The VE-like layer expressed VE

markers Gata6, Gata4, and Sox17 (Figures 2F–2H and S2F); the

TS compartment expressed the ExE markers Eomes, Ap2g and

Cdx2 (Figures 2F–2H and S2F); and the ES compartment ex-

pressed EPI markers Oct4 and Otx2 (Figures 2F–2H, 80/82

structures; Figure S2F). Finally, the VE-like layer adjacent to

the ES compartment expressed Eomes and Otx2 in nearly all

the cases examined (Figures 2F and 2I, 68/73; Figure S2F), in

agreement with Eomes and Otx2 expression in the embryonic

part of the VE. In comparison, the XEN layer of ETX embryos ex-

pressed Otx2 and Eomes in 40% of cases (Sozen et al., 2018).

iETX embryos at day 4 had a higher number of cells in each line-

age in comparison with ETX embryos at day 4 (Figure 2J).
iETX Embryos Form the Anterior Signaling Center
Since ETX embryos have a limited ability to form the anterior VE

(AVE) signaling center, we wondered whether iETX embryos

could better capture this process. We found that iETX embryos

at 4 days of development expressed three canonical AVE

markers, Cerl, Lefty1, and Dkk1 (Figures 3A, 3B, S3A, and

S3B). Cells expressing Cerl, Lefty1, and Dkk1 were either at

the distal tip of the iETX embryo, as at the time of AVE formation

in E5.5 embryos (Figures 3A and S3A) or were positioned asym-

metrically on one side of the iETX embryo, like their expression at
(E) iETX embryos at 1 day of development. ES and TS compartment are enclosedw

and downregulate CAG-GFP (arrows). 91/109 structures from 2 independent exp

(F–I) iETX embryo at day 4 stained for (F) Gata6 (green), Oct4 (gray), and Eomes

(G) Gata4 (green), Oct4 (gray), and Ap2g (red) (18/19 structures).

(H) iETX embryo at day 4 stained for Sox17 (green), Oct4 (gray), and Cdx2 (red)

(I) iETX embryo at day 3 stained for Otx2 (purple), Eomes (green), and DAPI (blue

(J) Lineage quantification in iETX embryos in comparison with E5.5 and ETX embry

Error bars: SD. *p < 0.05,**p < 0.01, ****p < 0.0001, ns, nonsignificant.

See also Figure S2.
E5.75 as the AVE begins its migration toward the future anterior

(Figures 3B and S3B).

Expression of these markers was maintained at day 5 (Figures

3C and 3D). At day 4, 65% of iETX embryos expressed Lefty1,

50% expressed Dkk1, and 36% expressed Cerl (Figures 3E–

3G, Cerl, 38/106; Lefty1, 58/89; Dkk1, 46/89). At day 5, 80% of

iETX embryos expressed Cerl (Figure 3E, 133/171) and Dkk1

expression increased to 70% (Figure 3F, 52/73). In contrast,

the proportion of iETX embryos expressing Lefty1 decreased

from 65% to 40% between days 4 and 5 (Figure 3G, 32/87).

We hypothesized that these differences at day 4 might relate

to differences in the size of the iETX embryos, because Cerl is

repressed by BMP4 signaling from the ExE (Rodriguez et al.,

2005; Richardson et al., 2006; Soares et al., 2008), andCerl is ex-

pressed only when the EPI has extended beyond a specific

length (Mesnard et al., 2006).We, therefore, measured the length

of the ES and TS compartments and correlated it to Cerl expres-

sion. iETX embryos with an ES compartment longer than the TS

compartment consistently expressed Cerl; in contrast, when the

TS compartment was longer than the ES compartment, there

was no Cerl expression (Figure 3H). We did not observe this rela-

tionship for Dkk1 (Figure 3I) and it was much weaker for Lefty1

(Figure 3J), suggesting that Cerl expression might be regulated

differently than Lefty1 and Dkk1. Analysis of the aspect ratio of

Cerl-positive and Cerl-negative cells indicated that Cerl-positive

cells were very similar in their morphology to AVE cells in em-

bryos (Stower and Srinivas, 2017) (Figures 3K and 3L).

In embryos, the distribution of Cerl-, Lefty1-, and Dkk1-ex-

pressing cells varies between E5.5 and E6.0 because the AVE

migrates toward the EPI/ExE boundary. At day 4, the AVE was

either distal or lateral (52% and 41% of the cases, Figures 3N

and 3O) and very rarely proximal (6%, Figure 3P). In contrast,

at day 5, 22% of iETX embryos had proximal AVE and 33%

had distal AVE, but there was no change in lateral AVE (Figures

3N–3P). Thus, at day 4, iETX embryos resemble E5.5/E5.75 em-

bryos in terms of AVE specification and position. At day 5, the in-

crease in the proportion of proximal AVE could either suggest

AVE migration or localized de novo upregulation of AVE markers

instead of cell migration.

To distinguish between these possibilities and investigate the

dynamics of AVE induction and migration, we generated iETX

embryos with a Cerl-GFP reporter/tetO-Gata4 line derived

from our transgenic Cerl-GFP mouse line (Mesnard et al.,

2004), in which GFP expression is under the control of the Cerl

promoter. We began live imaging at day 3, when the reporter

was not yet active (Figures 3Q and S3C). Reporter expression

commenced in a single cell at the tip, expanded from a single

cell to several, and initially resulted in the formation of a GFP-

positive domain. Following consolidation of GFP expression at
ith a dashed line. Dox-treated CAG-tetOG4 ESCs transiently expressmCherry

eriments. Scale bar, 30 mm.

(red) (41/42 structures).

(21/21).

) (27/31). (F–H) n = 3 each; scale, 30 mm. (I) n = 3; scale bar, 20 mm.

os. 15 iETX, n = 3; 10 ETX and 10 E5.5 embryos, n = 3: from (Sozen et al., 2018).
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the iETX embryo’s tip, the AVE began its migration until it

reached the boundary with the TS compartment after an average

of 18 h (Figures 3Q, S3D, and S3E; Videos S1 and S2), which is

slower than AVE migration in the embryo (Stower and Srini-

vas, 2017).

Tracking the migration trajectories of individual Cerl-GFP cells

showed they migrated directionally toward the proximal end of

iETX embryos (Figure S3F; Videos S3 and S4), consistent with

AVE migration in embryos. When compared with the speed of

AVE cells in embryos (0.23 ± 0.07 mm/min; mean ± SD) (Omel-

chenko et al., 2014), AVE in iETX embryos migrated at a similar

albeit slightly reduced speed (0.198 ± 0.040 mm/min, 26 cells

from 7 iETX embryos). Immunofluorescence confirmed the

asymmetric localization of the Cerl-GFP cells in the majority

(26/36) of iETX embryos examined (Figures S3G and S3H). This

is an important improvement over the ETX embryos, in which

we could observe neither the Cerl and Dkk1 proteins nor the

AVE migration.

iETX Embryos Specify Anterior and Posterior Domains
We next sought to determine whether the formation of the ante-

rior domain was accompanied by the establishment of a poste-

rior one. Embryos at E6.5 express Cerl and mesoderm marker

Bry (Wilkinson et al., 1990; Tosic et al., 2019) on opposite sides

(Figures 4A and S4A). iETX embryos displaying Bry on only one

side of the ES compartment on the fifth day of development

comprised 55% of the total Bry- and Cerl-expressing structures

(Figures 4B and S4B, 38/69 structures). In this subset, 87% of

iETX embryos expressed Cerl on the side opposite to Bry (Fig-

ures 4C and 4D), whereas in 13% of iETX embryos, Cerl was at

the distal tip. Importantly, we could not observe any instance

in which Cerl and Bry were expressed on the same side (Figures

4C and 4D). We examined the expression of two other anterior

markers, Dkk1 and Lefty1, in relation to Eomes, which is ex-

pressed in the PS (Tosic et al., 2019) and in iETX embryos at

day 5 (Figure S4C), which confirmed that formation of anterior
Figure 3. iETX Embryos Form a Migrating Anterior VE (AVE)

(A and B) Wild-type embryos (top) at E5.5 (A) or E5.75 (B) and representative iET

terisks), and DAPI (blue); max, maximum projection. Embryos: (A and B) 1 examp

bar, 20 mm.

(C and D) Representative iETX embryo at day 5 analyzed for Cerl (red, arrows),

(blue). (C) 23/63 structures. (D) 46/73 structures, n = 3 each; max., maximumprojec

bar, 10 mm.

(E–G) Expression of Cerl (E), Dkk1 (F), and Lefty (G) at 4 and 5 days in iETX embryos

and 52/73 [day 5, n = 3]; and Lefty1: 58/89 [day 4, n = 3] and 32/87 [day 5, n = 4

(H–J) Plot of ES/TS length ratio of iETX embryos at day 4with or without Cerl (H), Dk

n = 5. Lefty1: yes, 47; no, 25; n = 3.

(K) Representative iETX embryo at day 4 analyzed for Cerl (red), Phalloidin (blue)

bar, 30 mm.

(L) Cell aspect ratio quantification of the Cerl+ve and Cerl�ve domain in iETX emb

Cerl�ve group: 779 cells. Day 5 = 128 iETX embryos, n = 3; Cerl+ve domain: 1,65

shown. Line at 1 separates cuboidal/columnar shape ratio.

(M) iETX embryos at day 4 analyzed for Lefty1 (red) and DAPI (blue); the AVE angle

tip. Scale bar, 30 mm.

(N�P) iETX embryos at 4 and 5 days scored according to the position of the AVE:

11. day 5: 79/217 n = 11. (O) day 4: 63/142 n = 11. day 5: 93/217 n = 11. (P) day

(Q) Time-lapse stills of AVE formation and migration in a Cerl-GFP reporter iETX e

are green, every other cell is gray. Second and bottom row: Cerl-GFP+ve cells in

distal tip; 8/34: Cer-GFP was already present; 12/34: no GFP upregulation; 2/34: s

migration, 10/32: no migration. 11/32: no signal. Scale bar, 30 mm. *p < 0.05, **p

See also Figure S3.
and posterior domains occur on opposite sides in 80%–90%

(Cerl/Dkk1, 28/31; Cerl/Lefty1, 19/21) of the iETX embryos

examined (Figures 4E–4H).

Formation of anterior and posterior domains on opposite sides

was also conserved in iETX embryos expressing Bry around the

ES/TS boundary (45%, 31/69)(Figure 4I). Inmost cases, one pos-

terior domain was more expanded than the other, hence we

considered the more expanded domain as the ‘‘true’’ posterior

and the less expanded one as an ectopic posterior. In 50% of

cases, the Cerl domain was on the side of the less expanded,

ectopic posterior domain and opposite the large domain (Figures

S4D and 4J); in only 8% of cases was the Cerl domain on the

same side of the more expanded domain; in 7% of cases the

posterior domains were equal and, thus, the position of the

Cerl domain could not be assigned; and in 33% of the cases,

the Cerl domain was distal (Figures S4D and 4J).

To determine whether the position and the size of the AVE

could influence the likelihood that an iETX embryo would

develop an ectopic posterior domain, we measured the angle

of displacement of the Cerl domain away from the distal tip

and toward the ES/TS boundary and the angle of extension of

the Cerl domain. Structures without an ectopic Bry domain had

a more extended Cerl domain, which was closer to the ES/TS

boundary than structures with an ectopic Bry domain (Figures

S4E and S4F). Location of the Lefty1 domain was not signifi-

cantly different, but its extension was (Figures S4G and S4H).

On the other hand, the Dkk1 domain was significantly closer to

the ES/TS boundary in structures without ectopic Bry but the

extension of the domain itself was no different (Figures S4I and

S4J). These results suggest that the position and extension of

the Cerl domain are important factors in preventing the expres-

sion of ectopic Bry in iETX embryos, whereas Lefty1 and Dkk1

may contribute to a lesser extent.

Out of the iETX embryos without Cerl, 65% displayed ectopic

expression of Bry, suggesting that a subset of iETX embryos can

break symmetry without Cerl (Figures S4K and S4L). Since a
X embryo at day 4 (bottom) analyzed for Cerl (red, arrows), Lefty1 (green, as-

le each. iETX embryo: (A) 8/16 examples; (B) 8/16 examples, n = 3 each; scale

Lefty1 (C, green, asterisks), Dkk1 (D, green, asterisks), and DAPI or Phalloidin

tion; scale bar, 30 mm. (A–D) Dashed rectangles aremagnified on the left. Scale

(Cerl: 38/106 [day 4, n = 3] and 133/171 [day 5, n = 4]; Dkk1: 46/89 [day 4, n = 5]

] structures). Error bars, SD.

k1 (I), and Lefty1. (J) Cerl: yes, 38; no, 68; n = 3. Dkk1: yes, 43; no, 34 structures;

and Eomes (green). Rectangle below shows Cerl+ve and �ve domains. Scale

ryos at days 4 and 5. Day 4 = 31 iETX embryos, n = 3. Cerl+ve group: 206 cells;

6 cells; Cerl�ve domain: 3,856 cells. In all violin plots, median and quartiles are

was traced as the Lefty1+ve cell closest to the ES/TS boundary and the distal

distal (N), lateral (O), and proximal (P) as described in (M). (N) day 4: 67/142 n =

4: 12/142 n = 11. day 5: 45/217 n = 11. Error bars: SEM.

mbryo filmed from day 3 of development. Top and third row: Cerl-GFP+ve cells

gray (arrows). For DVE induction, 34 structures, n = 3, 12/34: induction at the

ignal was not induced at the tip. For AVEmigration, 32 structures, n = 3, 11/32:

< 0.01, ***p < 0.001, ****p < 0.0001, ns, nonsignificant.
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Figure 4. iETX Embryos Specify Anterior and Posterior Domains on Opposite Sides

(A) E6.5 embryo with Cerl (red, arrows), Bry (green, asterisks), and Oct4 (gray). Natural embryo: 2 examples.

(B) iETX embryo at day 5 analyzed for Cerl (red, arrows), Bry (green, asterisks), and Oct4 (gray). iETX embryos: 38/69 structures, n = 4. Scale bar, 30 mm.

(C) Schematic of possible Bry/Cerl position combinations: opposite sides, same side, or Cerl is at the distal tip.

(D) Scoring iETX embryo at 5 days of development according to (C). Opposite = 33 structures, same side = 0, distal = 4, n = 4.

(E) iETX embryo at day 5 analyzed for Cerl (red, white arrows), Dkk1 (green, asterisk), Eomes (gray, yellow arrows), andDAPI (blue); max., maximumprojection; 29/

69, n = 3. Scale bar, 30 mm.

(F) Scoring iETX embryos at day 5 according to the position of Cerl+ve/Dkk1+ve domain in relation to Eomes. Opposite = 28, same side = 1, distal = 2, n = 3.

(G) Same as (E) but with Lefty1 (green, asterisks) and Phalloidin (blue). 18/54 examples, n = 3. Scale bar, 30 mm.

(H) Same as (F) but with Cerl/Lefty1 in relation to Eomes. Opposite = 19, same side = 1, distal = 1, n = 3.

(I) Representative iETX embryo at day 5 with ectopic Bry and analyzed for Cerl (red, white arrows), Bry (gray, yellow arrows), Oct4 (green), and Phalloidin (blue).

Scale bar, 30 mm. 11/31, n = 4.

(legend continued on next page)
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decrease in Nodal levels can rescue ectopic Bry expression in

the absence of AVE (Perea-Gomez et al., 2002), we tested

whether altering Nodal signaling levels can affect mesoderm for-

mation. Culturing iETX embryos from day 4 to day 5 in Nodal in-

hibitor completely abrogated expression of Bry and Eomes (Fig-

ures S4M and S4N) in agreement with what was reported in

natural embryos (Brennan et al., 2001). These results indicate

that establishment of anterior and posterior domains occurs on

opposite sides of the ES compartment in iETX embryos and

Nodal is involved in this process as in natural embryos.

iETX Embryos Undergo Epithelial-to-Mesenchymal
Transition and Gastrulation
Having observed robust formation of anterior and posterior do-

mains in the iETX embryo, we wished to determine whether the

posterior side could also establish a PS to undertake gastrula-

tion. Gastrulation is evident in embryos at E6.75 when Bry-pos-

itive cells near the EPI/ExE boundary undergo the epithelial-to-

mesenchymal transition (EMT) and egress to form a mesoderm

layer between the EPI and the VE. We found that iETX embryos

also developed Bry-expressing cells between the ES compart-

ment and the VE-like layer between days 5 and 6 (Figures 5A–

5C) but not on the opposite side of the structure where Cerl

was expressed.

To understand the dynamics of this process, we performed

time-lapse imaging of iETX embryos from day 4 (Figures 5D

and S5A; Video S5). At the onset of imaging, cells on all sides

of the GFP-expressing ES compartment were epithelial and

columnar, but at 13 h, the cells on one side of the ES and TS

compartment boundary began to change their shape from

columnar to rounded and positioned themselves between the

ES compartment and the VE-like layer (Figure 5D). Between 13

and 16 h, the layer formed by the egressing cells had almost

extended to the distal tip, similar to PS formation in embryos (Ar-

nold and Robertson, 2009). Throughout this process, the

opposite, putative anterior side remained epithelial and did not

undergo EMT. PS extension continued until 27 h, with the streak

reaching the distal tip of the iETX embryo (Figure 5D). During

gastrulation, the thickness of the posterior side progressively

increased relative to the anterior side, which remained constant

and the streak steadily increased in length (Figures 5E and 5F).

On day 6, iETX embryos showed a large, Bry-positive domain

on the side of the ES compartment undertaking gastrulation (Fig-

ure 5G). In most of the structures examined, 40% of Bry-positive

cells expressed N-cadherin (Figure S5B), and there was downre-

gulation of laminin in the basement membrane at the point of

EMT, in contrast to other parts of the iETX embryo not undergo-

ing EMT (Figures 5G and S5C). Egressed cells were Bry-positive

and expressed laminin; formation of a laminin layer could be de-

tected between the mesoderm and the VE-like layer (Figure 5G).

The PS of iETX embryos expressed higher levels of Bry (Fig-

ure 5H), which was accompanied by downregulation of E-cad-

herin and upregulation of N-cadherin (Figure 5H). Finally,

egressed cells co-expressed Bry and the EMTmarker Snail (Fig-
(J) Scoring iETX embryo at 5 days according to the position of Cerl in relation to the

ectopic = 28, equal sides = 3, distal Cerl = 25, n = 8. (A, B, E, G, and I) Dashed recta

< 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S4.
ure 5I), suggesting that gastrulation in iETX embryos follows the

same process as the natural embryo (Ramkumar et al., 2016; Pu-

novuori et al., 2019; Kyprianou et al., 2020). Based on Snail-YFP

expression, 64%of the structures were undergoing EMT at day 5

(27/42, see also Figure S5D).

Gastrulation sees not only the formation of embryonic meso-

derm but also the proximal migration of mesodermal cells to

form extra-embryonic mesoderm (Sutherland, 2016; Saykali

et al., 2019). In 45% of day 5 iETX embryos undergoing EMT,

Bry/Oct4-expressing cells were observed between the VE-like

layer and the TS compartment (Figures S5E and S5F) and either

formed patches above the ES/TS boundary or were arranged as

a line of cells between the TS compartment and the VE-like layer

overlaying the TS compartment (Figure S5F, orange asterisks). In

20% of the examined iETX embryos, Bry was co-expressed with

Runx1, which marks extra-embryonic mesoderm cells commit-

ting to the hematopoietic lineage (Tanaka et al., 2014) (Fig-

ure S5G). This represents an important improvement over ETX

embryos, in which we did not observe formation of extra-embry-

onic mesoderm.

iETX Embryos Generate Heterogeneity in the Primitive
Streak and Form Definitive Endoderm
During gastrulation, the developing streak generates multiple

mesodermal and endodermal cell types required for subsequent

development and secretes Cerl, Lefty1, and Dkk1 (Robb and

Tam, 2004) leading us to ask whether similar changes take place

in gastrulating iETX embryos. Analysis of gastrulating iETX em-

bryos at day 5 indicated that, similar to natural embryos (Figures

6A, 6C, and 6E), we identified expression of Cerl, Dkk1, and

Lefty1 in the AVE and also in the developing PS (Figures 6B,

6D, and 6F). Posterior expression of Cerl, Lefty1, and Dkk1,

respectively, was present in 51% (17/33), 79% (27/34), and

37% (21/56) of the examined iETX embryos, indicating gastrula-

tion processes further than in ETX embryos.

We also observed co-expression of Bry and FoxA2 at day 6 in

the distal part of the PS (71%, 37/52) similar to E7.5 natural em-

bryos (Figures 6G and 6H), which is indicative of axial mesoderm

formation, and FoxA2 and Sox17 expression, indicative of defin-

itive endoderm (Figures 6I and 6J) (Nowotschin et al., 2019). Bry

and Sox17 were co-expressed in the ES compartment, suggest-

ing that a subset of cells express mesodermal markers before

acquiring definitive endoderm identity (Figure S6A), similar to

the embryo (Nowotschin et al., 2019).

We could not determine whether expression of neuroecto-

derm markers would occur, because after day 6, iETX embryos

became dark and lost their cylindrical appearance, suggesting

that 6 days of culture is the current limit for our system. Develop-

mental milestones of iETX embryos are presented in Figure S6B

and Table S1.

To understand further the developmental potential of iETX em-

bryos, we performed inDrop single-cell RNA sequencing on iETX

embryos and ETX embryos at day 4 and compared them with

embryos at E4.5(GEO: GSE134240, Sozen et al., 2019), E5.5,
posterior domain (Bry or Eomes) as described in Figure S4D. Non-ectopic = 5,

ngles aremagnified on the right. Scale bar, 10 mm. (D, F, H, J) Error bars, SD. **p
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Figure 5. iETX Embryos Undergo EMT and Gastrulation at Day 5

(A) (Top) E6.75 mouse embryo (1 example) and (bottom) iETX embryo at day 5 (21/31 examples, n = 3) analyzed for Cerl (red, arrows), Bry (green, asterisks), Oct4

(gray), and DAPI (embryo, blue) or Phalloidin (iETX embryo, blue). Rectangles are on the right. Scale bar, 30 mm.

(legend continued on next page)

ll
OPEN ACCESS Technology

10 Developmental Cell 56, 1–17, February 8, 2021

Please cite this article in press as: Amadei et al., Inducible Stem-Cell-Derived Embryos Capture Mouse Morphogenetic Events In Vitro, Developmental
Cell (2020), https://doi.org/10.1016/j.devcel.2020.12.004



ll
OPEN ACCESSTechnology

Please cite this article in press as: Amadei et al., Inducible Stem-Cell-Derived Embryos Capture Mouse Morphogenetic Events In Vitro, Developmental
Cell (2020), https://doi.org/10.1016/j.devcel.2020.12.004
and E6.5 (Figure 7A). Pearson correlation coefficients between

all samples indicated that iETX embryos were most similar to

E5.5 natural embryos (Figure 7B). We subdivided the natural

and ETX/iETX embryos into their constitutive lineages and

observed that all TS cells clustered with ExE derivatives and all

ESCs clustered with EPI derivatives, irrespective of whether

they originated from ETX or iETX embryos. On the other hand,

VE, XEN layer, and VE-like layer correlated less. The XEN layer

showed some similarity with the PrEn of the E4.5 embryo but

correlated little with E5.5 and E6.5 VE; the VE-like layer of iETX

embryos showed similarities to E4.5 PrEn and to the VE at

E6.5 but was most similar to E5.5 VE. This suggests that tetOG4

ESCs may generate an endodermal layer more similar to VE

(Figure 7C).

To identify specific cell subpopulations in this dataset, gene

signatures (Figure S7A) and Leiden clustering were utilized for

further classifications. The ExE cluster cells were divided into

ExE or differentiating ExE based on reciprocal expression of

the TS marker Cdx2 and differentiation marker Gata2, and we

also observed these signatures in the TS compartment. The

EPI cluster expressed the primed pluripotency marker Otx2;

the E6.5 EPI could be subdivided into nascent mesoderm, based

on Mesp1 expression, or into a PS subpopulation, based on

Eomes and Nanog (Saga et al., 1996; Pijuan-Sala et al., 2019).

Nascent mesoderm and PS signatures were already present in

the ES compartment, suggesting that it is primed for gastrulation

and may be at a more advanced stage than the E5.5 EPI. Never-

theless, expression of the EMT marker Snail1 mostly in the E6.5

EPI and not in the ES compartment confirmed that EMT in iETX

embryos does not occur until day 5. The VE cluster was initially

identified by Gata4 expression and then subdivided into parietal

endoderm based on LamB1 expression, in embryonic VE based

on Otx2/Eomes expression, and cells that were Gata4-positive,

but LamB1/Otx2/Eomes-negative were classified as extra-em-

bryonic VE. Within the embryonic VE cluster, we identified cells

expressing Cerl, Lefty1, Hhex, and Dkk1, indicating the AVE. In

iETX embryos, AVE-like cells expressed Dkk1, Lefty1, and

Hhex1 but low Cerl, suggesting an earlier stage of AVE develop-

ment, more similar to E5.25 (Hoshino et al., 2015). We could
(B) Orthogonal sections along the dashed lines in (A) to show mesodermal wings

(C) iETX embryo at 5 days of development analyzed for Bry (green), Oct4 (red), and

at the bottom (1, 2, 3) to highlight mesodermal wings and EMT in the structure (2

(D) Time-lapse stills of an iETX embryo imaged from day 4 to day 5. Top row: TS

Center row: CAG-GFP cells are displayed in gray. Dashed squares are magnified

comparable EMT, n = 3. Scale bar, 50 mm.

(E) Measurement of the thickness of the anterior, nongastrulating side (purple dots

in (D). Error bars, SD.

(F) Measurement of iETX embryo length (green dots) and extending PS length ov

(G) iETX embryo at day 6 analyzed for Bry (green), N-Cad (red), laminin (gray), a

arrows) at the posterior are highlighted. Squares below highlight (3) the gastrula

laminin (fire). Arrows: Bry/N�Cad+ve cells undergoing EMT; arrowheads: intact

distal tip without N-Cad and with intact laminin tract (arrowheads). 21/24 examp

(H) iETX embryo at day 5 analyzed for DAPI (gray), Bry (blue), E-Cad (green), and

quantification of Bry, E-Cad, and N-Cad expression in the anterior EPI and PS. Me

examples, n = 3. Error bars, SEM.

(I) iETX embryo at day 5 generated with a Snail-YFP reporter line and analyzed fo

marks the PS. White rectangle is on the right. Scale bar, 30 mm. 27/42, n = 3. B

embryos. Each dot is an iETX embryo. Bottom, right: percentage of Snail+ve cells

all violin plots, median and quartiles are shown. *p < 0.05, **p < 0.01, ****p < 0.0

See also Figure S5.
detect an additional, small subpopulation of cells expressing

Hhex, Lefty1, and low Otx2, similar to the expression of these

markers in the E4.5 PrEn (Hoshino et al., 2015), we termed these

‘‘early VE-like layer’’ (Figure 7D).

With these classifications, TS cells from ETX and iETX em-

bryos clustered together with ExE as a group, although differen-

tiating TS cells were most different from ExE at E5.5 and E6.5.

ESCs from the ETX and iETX embryos clustered together with

EPI. Subdivision of the endodermal lineages into these subpop-

ulations shed further light on the relationship between the XEN

layer, the VE-like layer, and the VE. The XEN layer samples

were most similar to the parietal endoderm of embryos. By

contrast, the VE-like layer correlated with the VE and differed

from E5.5 and E6.5 parietal endoderm. This suggests that while

induced ESCs are not identical to the natural VE, they are a

marked improvement over standard XEN cells in recapitulating

the natural gene-expression signature (Figure 7E).

Differential gene-expression analysis using Wilcoxon rank

sum test between the VE-like layer and the VE indicated that

25 genes were downregulated and 71 genes were expressed

at higher levels in the VE-like layer of iETX embryos in compar-

ison with the VE (Figure 7F). Genes with higher expression in

iETX embryos included Smad2, Wnt11, and Id3, suggesting dif-

ferences in Nodal, Wnt, and Bmp signaling, and Igfbp2, which

may indicate differences in metabolic pathways. Comparison of

the VE-like layer to the XEN layer (Figure 7G) revealed that the

former expressed several regulators of AVE and embryonic VE

formation, including Hhex, Hexs1, Gsc, Lhx1, and Afp. Consis-

tent with our previous observations, we also detected Eomes,

Lefty1, and Dkk1. The VE-like layer expressed a higher level

of Nodal than the XEN layer. Gene ontology analysis of the

genes upregulated in the VE-like layer of iETX embryos also

indicated the presence of regulators of the Wnt pathway (Fig-

ures S7B–S7E; Table S2). Comparison of the VE with the

XEN layer of ETX embryos showed differences in the same

genes identified when we compared the VE-like layer with the

XEN layer (Figures S7F–S7H), once again indicating the high

degree of similarity between VE and VE-like layer. In summary,

the VE-like layer of iETX embryos expresses a number of
. Markers are same as (A). Scale bar, 30 mm.

Phalloidin (gray). Orthogonal sections in the xz from indicated dashed lines are

8 examples, n = 3). Scale bar, 30 mm.

cells are in gray, wild-type CAG-GFP and induced CAG-tetOG4 are in green.

at the bottom and highlight the prospective posterior side. 6/13 structures with

), and the posterior, gastrulating side (green dots) over time in the iETX embryo

er time for the iETX embryo in (D).

nd DAPI (blue). PS (white arrows) and breached basement membrane (yellow

ting posterior, analyzed with Bry (green), N-Cad (red) and laminin (gray), and

laminin; asterisks: ruptured laminin tract. Panels (1) and (2) show anterior and

les, n = 4. Scale bar, 30 mm.

N-Cad (magenta); rectangle is shown on the right. Scale bar, 30 mm. Below,

an fluorescent intensities of the markers were normalized to DAPI intensity. 20

r DAPI (gray), Oct4 (blue), Bry (red), and Snail-YFP (green, aGFP). Dashed line

ottom, left: quantification of Bry+ve, Snail/Bry+ve, and Snail+ve cells in iETX

found in the ES comp. or PS. Each dot is an iETX embryo, 13 examples, n = 3. In

001, ns, nonsignificant.
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Figure 6. iETX Embryos Generate Heterogeneity in the Primitive Streak and Form Definitive Endoderm

(A, C, and E) Natural embryos at late E6.75 analyzed for DAPI (magenta) and (A) Cerl (green), (C) Dkk1 (green), and (E) Lefty1 (green). The maximum projection of

Cerl, Dkk1, and Lefty1 is in the right panels. Dashed line marks the PS. (Cerl, Dkk1, and Lefty1: 3 embryo examples each) Scale bar, 30 mm.

(B, D, and F) iETX embryos collected at 5 days of development and analyzed for (B) Bry (red), (D and F) Eomes (red) and (B) Cerl (green), (D) Dkk1 (green), and (F)

Lefty1 (green), (B) Oct4 (blue), and (D and F) Phalloidin (blue). Cerl, Dkk1, and Lefty1 maximum projection is in the right panels. Dashed rectangles are magnified

on the right. (Cerl: 17/33, n = 3; Dkk1: 21/56, n = 3; Lefty1: 27/34, n = 3) (A–F): white arrows indicate the AVE andwhite arrowheads posterior expression of the AVE

marker; (A–P) indicates the anterior-posterior axis. Scale bar, 30 mm. Cerl, Lefty1 and Dkk1 in these panels were visualized using Alexa-568 or Alexa-647

secondary. Dashed rectangles scale bar, 10 mm.

(G and H) E7.5 mouse embryo (G) and iETX embryo at day 6 of development (H) analyzed for FoxA2 (red), Bry (green), and DAPI (blue); dashed squares are

magnified on the right (Embryo: 2 examples; iETX embryo: correct patterning: 45/52; extended streak: 37/52, n = 6). Scale bar, 30 mm.

(I and J) E7.5 mouse embryo (I) and iETX embryo at day 6 of development (J) analyzed for FoxA2 (red), Sox17 (green), and DAPI (blue); dashed squares are on the

right (Embryo: 3 examples; iETX embryo: extended streak with Sox17/FoxA2 in 17/31 examples, n = 3). Scale bar, 30 mm.

See also Figure S6 and Table S1.
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Figure 7. The VE-like Layer Formed by CAG-tetOG4 ES Cells Is More Similar to Natural VE

(A) Schematic of inDrop sequencing.

(B) Global correlation matrix of natural embryos (E4.5, E5.5, and E6.5) and ETX and iETX embryos (day 4).

(legend continued on next page)
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crucial regulators of VE identity, AVE specification, as well as

factors regulating mesoderm formation and gastrulation, which

could increase the developmental potential of iETX embryos

(Figure 7H).

Discussion

Stem cell models of embryo development hold the promise to

streamline the study of uncharacterized genes, novel drugs,

and developmental pathways because of their modular design

and ease of separately manipulating each compartment (Bras-

sard and Lutolf, 2019). Here, we have developed a model of

mouse embryo development using iETX embryos, which builds

upon, and significantly improves, our previously reported ETX

embryos (Sozen et al., 2018).

Morphologically, iETX embryos are very similar at days 4 and 5

to natural embryos at E5.5 and E6.5 and express the canonical

markers of post-implantation development at these stages.

Importantly, iETX embryos can induce formation of AVE, as indi-

cated by the expression of Cerl, Lefty1, andDkk1, and this AVE is

able to migrate asymmetrically toward the boundary of ES- and

TS-derived compartments. Anterior and posterior domains are

specified on opposite sides and the embryo-like structure then

undertakes gastrulation with formation of embryonic and extra-

embryonic mesoderm and definitive endoderm. These pro-

cesses occur reproducibly in the great majority of the structures

examined and make this a valuable system to study AVE induc-

tion and gastrulation in vitro.

At a technical level, iETX embryos are easier to generate

because they grow in standard, nonconditioned tissue-culture

media and do not require the establishment of novel XEN lines,

but existing ES lines can be modified for this assay. Our single-

cell sequencing data show that replacing XEN cells with tetOG4

ESCs is beneficial because they make a VE-like layer, which is

more similar to the natural VE and expresses several regulators

of AVE development, potentially accounting for the broader

developmental potential of iETX embryos.

Limitations
One current limitation is the observed downregulation of Lefty1

at day 5. Since Lefty1 is a direct Nodal target (Takaoka et al.,

2017), this may mean that Nodal signaling is not sustained

enough at that point. Our data also suggest that expression of

Cerl, Lefty1, and Dkk1 in the AVEmay be differentially regulated,

but this needs to be tested in the future. Second, when the AVE is
(C) Correlationmatrix with the same samples in (B) subdivided according to their lin

cell compartment (ES comp), trophoblast stem cell compartment (TS comp), extra

(VE-like layer).

(D) Single-cell sequencing UMAP and sample separation in subpopulations ba

developmental stage. Developmental stage classification was based on leiden c

(E) Correlation matrix of the single-cell subpopulations in (D).

(F and G) Volcano plot of genes downregulated or upregulated in the VE-like laye

layer of iETX embryos versus upregulated in the XEN layer of ETX embryos (G).

(H) Summary: Dox-treated, induced tetOG4 ESCs combined with wild-type ES an

and TS compartments surrounded by a VE-like layer, called induced ETX embryos

day 4, which then migrates between day 4 and day 5 to establish the anterior d

compartment indicates formation of the posterior domain. On day 5 and onward,

extra-embryonic mesoderm and definitive endoderm.

See also Figure 7; Table S2.
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not positioned correctly, posteriorizing signals from the TS

compartment induce mesoderm formation on both sides of the

ES compartment. One of the two sides is consistently more

advanced than the other, suggesting that even incomplete

migration of the AVE is sufficient to set up an asymmetry that fa-

vors one posterior domain over the other. Finally, iETX embryos

cannot be cultured beyond 6 days; thus, improved culture con-

ditions will be needed to test their developmental potential

further.

We conclude that the state of the VE precursor cells plays a

considerable part in defining the extent of development of syn-

thetic embryo structures. Here, by expressing Gata4 in ESCs,

we generate VE-like cells that are able to undertake considerably

more extensive AVE development and PS formation at gastrula-

tion in iETX embryos and, therefore, provide a better building

block for these post-implantation structures. We show that this

is a consequence of the greater similarity of these cells to natural

VE than XEN cells, since they express important regulators of VE

as well as crucial regulators of mesoderm formation and gastru-

lation. These different genetic signatures can account for the

different developmental potential of these two stem-cell-based

systems.
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Hofherr, A., Probst, S., Köttgen, M., Hein, L., and Arnold, S.J. (2019). Eomes

and brachyury control pluripotency exit and germ-layer segregation by chang-

ing the chromatin state. Nat. Cell Biol. 21, 1518–1531.

UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge

47, D506–D515.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,

Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.

(2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat. Methods 17, 261–272.

Weber, R.J., Pedersen, R.A., Wianny, F., Evans, M.J., and Zernicka-Goetz, M.

(1999). Polarity of the mouse embryo is anticipated before implantation.

Development 126, 5591–5598.

Wilkinson, D.G., Bhatt, S., and Herrmann, B.G. (1990). Expression pattern of

the mouse T gene and its role in mesoderm formation. Nature 343, 657–659.

Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell

gene expression data analysis. Genome Biol. 19, 15.

Wolock, S.L., Lopez, R., and Klein, A.M. (2019). Scrublet: computational iden-

tification of cell doublets in single-cell transcriptomic data. Cell Syst. 8,

281–291.e9.

http://refhub.elsevier.com/S1534-5807(20)30979-5/sref27
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref27
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref27
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref28
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref28
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref28
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref29
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref29
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref29
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref30
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref30
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref30
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref30
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref31
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref31
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref31
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref32
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref32
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref32
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref33
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref33
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref33
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref33
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref34
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref34
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref34
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref34
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref35
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref35
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref35
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref35
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref36
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref36
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref36
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref36
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref37
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref37
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref37
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref37
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref38
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref38
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref38
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref38
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref39
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref39
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref39
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref40
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref40
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref42
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref42
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref42
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref43
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref43
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref43
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref43
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref44
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref44
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref44
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref45
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref45
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref45
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref46
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref46
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref46
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref47
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref47
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref47
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref47
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref48
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref48
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref48
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref49
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref49
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref49
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref50
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref50
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref50
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref50
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref51
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref51
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref51
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref52
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref52
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref53
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref53
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref53
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref54
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref54
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref55
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref55
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref55
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref56
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref56
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref57
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref57
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref57
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref58
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref58
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref58
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref58
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref59
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref59
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref60
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref60
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref60
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref61
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref61
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref61
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref61
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref62
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref62
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref63
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref63
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref63
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref63
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref64
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref64
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref64
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref65
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref65
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref66
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref66
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref67
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref67
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref67


ll
OPEN ACCESSTechnology

Please cite this article in press as: Amadei et al., Inducible Stem-Cell-Derived Embryos Capture Mouse Morphogenetic Events In Vitro, Developmental
Cell (2020), https://doi.org/10.1016/j.devcel.2020.12.004
Ye, X., Tam, W.L., Shibue, T., Kaygusuz, Y., Reinhardt, F., Ng Eaton, E., and

Weinberg, R.A. (2015). Distinct EMT programs control normal mammary

stem cells and tumour-initiating cells. Nature 525, 256–260.

Zhang, S., Chen, T., Chen, N., Gao, D., Shi, B., Kong, S., West, R.C., Yuan, Y.,

Zhi, M., Wei, Q., et al. (2019). Implantation initiation of self-assembled embryo-

like structures generated using three types of mouse blastocyst-derived stem

cells. Nat. Commun. 10, 496.
Zhao, S., Nichols, J., Smith, A.G., and Li, M. (2004). SoxB transcription factors

specify neuroectodermal lineage choice in ES cells. Mol. Cell. Neurosci. 27,

332–342.

Zilionis, R., Nainys, J., Veres, A., Savova, V., Zemmour, D., Klein, A.M., and

Mazutis, L. (2017). Single-cell barcoding and sequencing using droplet micro-

fluidics. Nat Protoc. 12, 44–73.
Developmental Cell 56, 1–17, February 8, 2021 17

http://refhub.elsevier.com/S1534-5807(20)30979-5/sref68
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref68
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref68
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref69
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref69
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref69
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref69
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref70
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref70
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref70
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref71
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref71
http://refhub.elsevier.com/S1534-5807(20)30979-5/sref71


ll
OPEN ACCESS Technology

Please cite this article in press as: Amadei et al., Inducible Stem-Cell-Derived Embryos Capture Mouse Morphogenetic Events In Vitro, Developmental
Cell (2020), https://doi.org/10.1016/j.devcel.2020.12.004
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat polyclonal anti-AP-2 gamma R&D Systems Cat# AF5059; RRID: AB_2255891

Mouse monoclonal anti-AP-2 gamma Santa Cruz Biotechnology Cat# sc-12762; RRID: AB_667770

Goat polyclonal anti-Brachyury R&D Systems Cat# AF2085; RRID: AB_2200235

Mouse monoclonal anti-Cdx2 BioGenex Cat# MU392-UC; RRID: AB_2335627

Rabbit monoclonal anti-Cdx2 Abcam Cat# ab76541; RRID: AB_1523334

Rat monoclonal anti-Cerberus 1 R&D Systems Cat# MAB1986; RRID: AB_2275974

Goat polyclonal anti-Dkk1 R&D Systems Cat# AF1096; RRID: AB_354597

Rabbit polyclonal anti-TBR2 / Eomes Abcam Cat# ab23345; RRID: AB_778267

Rabbit monoclonal anti-FoxA2 / HNF3 Cell Signaling Technology Cat# 8186; RRID: AB_10891055

Mouse monoclonal anti-GATA-4 Santa Cruz Biotechnology Cat# sc-25310; RRID: AB_627667

Goat polyclonal anti-GATA-6 R&D Systems Cat# AF1700; RRID: AB_2108901

Rat monoclonal anti-GFP Nacalai Tesque Cat# GF090R; RRID: AB_2314545

Rabbit polyclonal anti-laminin Sigma-Aldrich Cat# L9393; RRID: AB_477163

Goat polyclonal anti-Lefty R&D Systems Cat# AF746; RRID: AB_355566

Mouse monoclonal anti-N-Cadherin BD Biosciences Cat# 610920; RRID: AB_2077527

Mouse monoclonal anti-Oct-3/4 Santa Cruz Biotechnology Cat# sc-5279; RRID: AB_628051

Goat polyclonal anti-Otx2 R&D Systems Cat# AF1979; RRID: AB_2157172

Rat monoclonal anti-Podocalyxin R&D Systems Cat# MAB1556; RRID: AB_2166010

Rabbit monoclonal anti-RUNX1 / AML1 Abcam Cat# ab92336; RRID: AB_2049267

Goat polyclonal anti-Sox17 R&D Systems Cat# AF1924; RRID: AB_355060

Donkey anti-Mouse IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 488

Thermo Fisher Scientific Cat# A-21202; RRID: AB_141607

Donkey anti-Rabbit IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 488

Thermo Fisher Scientific Cat# A-21206; RRID: AB_2535792

Donkey anti-Goat IgG (H+L) Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 488

Thermo Fisher Scientific Cat# A-11055; RRID: AB_2534102

Donkey anti-Mouse IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 568

Thermo Fisher Scientific Cat# A10037; RRID: AB_2534013

Donkey anti-Rabbit IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 568

Thermo Fisher Scientific Cat# A10042; RRID: AB_2534017

Donkey anti-Goat IgG (H+L) Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 568

Thermo Fisher Scientific Cat# A-11057; RRID: AB_2534104

Donkey anti-Mouse IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 647

Thermo Fisher Scientific Cat# A-31571; RRID: AB_162542

Donkey anti-Rabbit IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 647

Thermo Fisher Scientific Cat# A-31573; RRID: AB_2536183

Donkey anti-Goat IgG (H+L) Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 647

Thermo Fisher Scientific Cat# A-21447; RRID: AB_2535864

(Continued on next page)

e1 Developmental Cell 56, 1–17.e1–e9, February 8, 2021



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Donkey Anti-Rat IgG H&L (Alexa Fluor�
647) preadsorbed antibody

Abcam Cat# ab150155; RRID: AB_2813835

Bacterial and Virus Strains

5a-competent E.coli New England Biolabs C2987I

Chemicals, Peptides, and Recombinant Proteins

CHIR99021 Cambridge Stem Cell Institute N/A

PD0325901 Cambridge Stem Cell Institute N/A

Leukaemia inhibitory factor Cambridge Stem Cell Institute N/A

FGF2 Cambridge Stem Cell Institute N/A

Recombinant Mouse FGF-4 (aa 67-202) R&D Systems Cat# 7486-F4-025

SB431542 STEMCELL Technologies Cat# 72234

Y-27632 STEMCELL Technologies Cat# 72304

inDrops v3 barcoding oligonucleotides Briggs et al., 2018 N/A

Critical Commercial Assays

QuantiTect Reverse Transcription Kit Qiagen Cat# 205310

SYBR Green PCR Master Mix Applied Biosystems Cat# 4368708

Gateway BP Clonase II Enzyme mix Invitrogen Cat# 11789-100

Gateway LR Clonase II Enzyme mix Invitrogen Cat# 11791-100

Lipofectamine 3000 Transfection Reagent Invitrogen Cat# L3000001

Deposited Data

E4.5 blastocysts single-cell RNA

sequencing data

Sozen et al., 2019 GSE134240

E5.5, E6.5 embryo; day 4 ETX and iETX-

embryos

This paper GSE161947

Code for analysis of single-cell RNA

sequencing data

This paper https://github.com/fhlab/

scRNAseq_inducedETX

Experimental Models: Cell Lines

Mouse: CAG-GFP/tetO-mCherry/tetO-

Gata4 ESCs

This paper N/A

Mouse: Cerl-GFP mouse ESCs Mesnard et al., 2004 N/A

Mouse: Cerl-GFP/tetO-Gata4 ESCs This paper N/A

Mouse: Bry-GFP ESCs Lacaud et al., 2004 N/A

Mouse: Snail-YFP ESCs Dr. Robert Weinberg (Whitehead Institute

for Biomedical Research, USA)

Dr. Michaela Frye (Stem Cell Institute,

University of Cambridge, UK)

N/A

Mouse: Confetti TS cells Prof. Jenny Nichols (Stem Cell Institute,

University of Cambridge, UK)

N/A

Mouse: Wildtype TS cells Sozen et al., 2019 N/A

Experimental Models: Organisms/Strains

Mouse: CD-1 Charles River N/A

Mouse: F1 Charles River N/A

Oligonucleotides

PCR primer: Gata4-AttB Forward:

GGGGACAAGTTTGTACAAAAA

AGCAGGCT

This paper N/A

PCR primer: Gata4-AttB Reverse:

GGGGACCACTTTGTACAAGA

AAGCTGGGT

This paper N/A

(Continued on next page)

ll
OPEN ACCESSTechnology

Developmental Cell 56, 1–17.e1–e9, February 8, 2021 e2

Please cite this article in press as: Amadei et al., Inducible Stem-Cell-Derived Embryos Capture Mouse Morphogenetic Events In Vitro, Developmental
Cell (2020), https://doi.org/10.1016/j.devcel.2020.12.004

https://github.com/fhlab/scRNAseq_inducedETX
https://github.com/fhlab/scRNAseq_inducedETX


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
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Software and Algorithms

Imaris Oxford Instruments https://imaris.oxinst.com/

Fiji Schindelin et al., 2012 https://imagej.net/Fiji

NDSAFIR 3.0 Boulanger et al., 2010 https://gitlab.inria.fr/serpico

Smart Denoise Gurdon Institute N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

StackReg (ImageJ/Fiji plugin) Thévenaz et al., 1998 http://bigwww.epfl.ch/thevenaz/stackreg/

MultiStackReg (ImageJ/Fiji plugin) Brad Busse (Division of Program

Coordination, Planning and Strategic

Initiatives, NIH - USA)

https://github.com/miura/

MultiStackRegistration

Template Matching and Slice Alignment

(ImageJ/Fiji plugin)

Qingzong Tseng (Aix-Marseille Université,

France

https://sites.google.com/site/

qingzongtseng/template-matching-ij-

plugin

Chemotaxis and Migration Tool ibidi https://ibidi.com/chemotaxis-analysis/171-

chemotaxis-and-migration-tool.html

Prism 8 GraphPad https://www.graphpad.com/scientific-

software/prism/

Bcl2fastq Illumina N/A

FastQC tool Andrews, 2010 https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

Pheniqs Biosails https://github.com/biosails/pheniqs

zUMIs Parekh et al., 2018 https://github.com/sdparekh/zUMIs

Scanpy Wolf et al., 2018 https://github.com/theislab/scanpy

Scrublet Wolock et al., 2019 https://github.com/AllonKleinLab/scrublet

SciPy Virtanen et al., 2020 N/A

Seurat v3 Stuart et al., 2019 https://github.com/satijalab/seurat

DAVID Gene Ontology Huang et al., 2009b, 2009a https://david.ncifcrf.gov/

Other

AggreWell400 STEMCELL Technologies Cat# 34415

Anti-Adherence Rinsing Solution STEMCELL Technologies Cat# 07010

Gri3D PEG-hydrogel dishes SunBioscience https://sunbioscience.ch/products/

Leica SP5 Leica Microsystems N/A

Leica SP8 Leica Microsystems N/A

Zeiss Axiovert 200M Zeiss N/A
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Resource availability

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Magda-

lena Zernicka-Goetz (mz205@cam.ac.uk).

Materials Availability
All unique/stable reagents generated in this study are available from and will be provided by the Lead Contact with a completed Ma-

terials Transfer Agreement.

Data and Code Availability
The accession number for the single-cell sequencing data reported in this paper is Gene Expression Omnibus: GSE134240 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161947).The code used in these analyses is available at https://github.com/

fhlab/scRNAseq_inducedETX.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture Conditions
Cell lines used in this study include:

- CAG-GFP/tetO-mCherry mouse ESCs (constitutive GFP expression in the membrane; transient mCherry expression upon Dox

treatment). The parent CAG-GFP/tetO-mCherry ESC line was derived from an existing mouse line with constitutive CAG-GFP

expression and Dox-induced transient mCherry expression. This line was generated by breeding CAG-GFP (Rhee et al., 2006)

reporter mice and tetO-mCherry Histone mice (Egli et al., 2007). For the purpose of this study, an independent Dox-inducible
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Gata4-expressing cassette was introduced into the CAG-GFP/tetO-mCherry ES lines by piggyBac-based transposition, as

described below, thus mCherry and Gata4 are regulated by two, independent Dox-responsive promoters.

- CAG-GFP/tetO-mCherry/tetO-Gata4 ESCs generated in-house.

- Cerl-GFPmouse ESCs (GFP expression under the control of the Cerl-promoter) were derived from a published Cerl-GFPmouse

line (Mesnard et al., 2004).

- Cerl-GFP/tetO-Gata4 ESCs generated in-house.

- Bry-GFP ESCs (Lacaud et al., 2004).

- Snail-YFP ESCs were derived from Snail-YFP transgenic mice (Ye et al., 2015), which were a generous gift of Dr. Robert Wein-

berg (Whitehead Institute for Biomedical Research USA) and Dr. Michaela Frye (University of Cambridge, UK).

- MouseConfetti TS cells were a generous gift of Prof. Jenny Nichols (StemCell Institute, Cambridge, UK). Because they were not

treated with Tamoxifen, they did not express any reporter.

- Wildtype TS cells were generated in house from CD1 mice (Sozen et al., 2019).

The sex of the cell lines is not known because we did not genotype them to determine it.

All cell lines were routinely tested every two weeks to ensure that they were not contaminated with mycoplasma.

Mouse embryonic stem cells were cultured on gelatinised plates at 37�C, 5% CO2, 21% O2 in N2B27 which is comprised of 50%

Neurobasal-A (Gibco 10888022), 50% DMEM/F-12 (Gibco 21331020), 0.5% N2 (in-house), 1% B27 (Gibco 10889038), 2mM Gluta-

MAX (Gibco 35050038), 0.1mM 2-mercaptoethanol (Gibco 31350010) and 1%penicillin/streptomycin (Gibco 15140122). N2B27was

supplementedwith 3mMCHIR99021 (Cambridge StemCell Institute), 1mMPD0325901 (Cambridge StemCell Institute) and 10 ngml-1

leukaemia inhibitory factor (Cambridge Stem Cell Institute). Mouse trophoblast stem (TS) cells were cultured on mitotically inacti-

vatedmouse embryonic fibroblasts (MEFs, Insight Biotechnology, ASF-1201) in feeder cell (FC) mediumwhich contained Dulbecco’s

modified essential medium (Gibco 41966052), 15% foetal bovine serum (Cambridge Stem Cell Institute), 1mM sodium pyruvate

(Gibco 11360039), 2mMGlutaMAX (Gibco 35050038), 1%MEM non-essential amino acids (Gibco 11140035), 0.1mM 2-mercaptoe-

thanol (Gibco 31350010) and 1% penicillin/streptomycin (Gibco 15140122). FC medium was supplemented with 1 mg ml-1 heparin

(Sigma-Aldrich H3149-25KU), 25 ng ml-1 FGF2 (Cambridge Stem Cell Institute) and 25 ng ml-1 FGF4 (R&D Systems 7486-F4-025)

(FC F42H). Passaging of ES and TS cells was performed when they were at 70% confluency as follows: cells were washed once

in 1x PBS (Life Technologies 10010056) and trypsinised (Trypsin-EDTA 0.05% Life Technologies 25300054) for 4 minutes at

37�C. The reaction was stopped by adding 2 mL of FC, cells were dissociated by pipetting gently 4-5 times and centrifuged for 4 mi-

nutes at 200 x g. TS cells were then resuspended in FC F42H culture media and plated onto MEF-coated plates in 1:20 dilution. ESCs

were washed once with 1 mL of 1x PBS, centrifuged again, resuspended in N2B27 2iLIF and plated at 1:10 or 1:20 onto gelatine-

coated plates.

Mouse Model
Mice were handled following national and international guidelines. All experiments performed were under the regulation of the Ani-

mals (Scientific Procedures) Act 1986 Amendment Regulations 2012 and were reviewed by the University of Cambridge Animal Wel-

fare and Ethical Review Body (AWERB). Experiments were approved by the Home Office. Animals were inspected daily and those

showing signs of any health concern or condition were promptly culled by cervical dislocation. All experimental mice were free of

pathogens and were on a 12-12 hour light-dark cycle, with unlimited access to water and food. Temperature in the facility was

controlled and maintained at 21�C. Mice for post-implantation embryo recovery (CD-1 females and males from Charles River, accli-

matised for 1 week prior to use) were utilised from 6weeks of age. Female andmales were naturally mated and kept together for up to

five days or until a plug was found; females were inspected daily for plugs. Females were culled by cervical dislocation 5.5, 5.75, 6.5,

6.75 or 7.5 days after a plug was found. Embryos were dissected out of the deciduae in M2 medium (Sigma M7167). For chimera

experiments, F1 females (Charles River, 1 week of acclimatisation prior to use) at 5-6 weeks of age were super-ovulated by injection

of 7.5 IU of pregnant mares’ serum gonadotropin (Intervet) and 7.5 IU of human chorionic gonadotropin (Intervet) after 48 hours and

were mated with F1males (Charles River, 1 week of acclimatisation prior to use). Pregnant F1 females were culled at E2.5 by cervical

dislocation to recover embryos by uterine and oviduct flushing in M2 medium.

Method details

Formation of ES Cell Aggregates and iETX embryos
To prepare the AggreWell plate (STEMCELL Technologies 34415), 500ml of anti-adherence rinsing solution (STEMCELL Technologies

07010) was added to each well. The plate was then centrifuged at 2,000 x g for 5 minutes and was incubated for 20 minutes at room

temperature. Rinsing solution was then aspirated from the well and 1ml of PBS was added to wash each well. 500ml of FC medium

was added to each well after aspirating the PBS.

To prepare ESCs for generating ES aggregates, Doxycycline (1 mg/mL) (Sigma-Aldrich D9891-5G) was added to CAG-GFP tetO-

Gata4 ESCs 6 hours prior to plating in AggreWell. ESCs were washed once with 1x PBS, and trypsinised with 0.05% trypsin-EDTA

(ThermoFisher Scientific) for 4 minutes at 37�C. The reaction was stopped by adding 2 mL of FC. Cells were dissociated gently by

pipetting for 4-5 times and centrifuged at 200 x g for 4 minutes. The cell pellet was washed once with 1x PBS, centrifuged again and

resuspended in 1-2 mL of FC. Cell suspensions containing 1) 12,000 Doxycycline-treated CAG-GFP tetO-Gata4 ESCs, or 2) 12,000
e5 Developmental Cell 56, 1–17.e1–e9, February 8, 2021
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untreated CAG-GFP tetO-Gata4 ESCs, or 3) amixture of 6,000Doxycycline-treated and 6,000 untreated CAG-GFP tetO-Gata4 ESCs

were pelleted again by centrifugation. After resuspending in 1ml of FC medium, the cell suspension was added dropwise to the Ag-

greWell and the plate was centrifuged at 100 x g for 3 minutes. 1ml of fresh FC medium was added each day after removing 1ml of

medium from the well. ES aggregates were collected and fixed after 1 day or 3 days.

To generate iETX embryos, Doxycycline was added to CAG-GFP tetO-Gata4 ESCs for 6 hours. TS cells were trypsinised and were

added to a gelatinised plate to deplete the MEFs for 20 minutes at 37�C. CAG-GFP WT ESCs and CAG-GFP tetO-Gata4 ESCs were

subsequently trypsinised. Cell suspensions with 19,200 TS cells, 6,000 CAG-GFP WT ESCs and 6,000 CAG-GFP tetO-Gata4 ESCs

weremixed and pelleted by centrifugation. The cell pellet was resuspended in 1ml of FCmediumwith 7.5 nMROCK inhibitor (Y27632,

STEMCELL Technologies 72304). After adding the cell mixture dropwise to the AggreWell, the plate was centrifuged at 100 x g for

3 minutes. On the next day, media change was performed twice by removing 1ml of medium from each well and adding 1ml of fresh

FC medium without ROCK inhibitor. On day 2, media change was performed once to replace 1ml of medium with 1ml of fresh FC

medium. On day 3, 1.2 ml of medium was removed from each well and 1.5ml of IVC1 was added, after equilibrating for 20 minutes

in the incubator. IVC1 (Bedzhov et al., 2014) is made of advanced DMEM/F12 (Gibco, 21331-020) supplemented with 20% (v/v) FBS,

2mMGlutaMax, 1% v/v penicillin–streptomycin, 1X ITS-X Thermo Fisher Scientific, 51500-056), 8 nM b-estradiol, 200 ng/ml proges-

terone and 25 mMN-acetyl-L-cysteine. On day 4, iETX embryos in the AggreWell were transferred to CELLSTAR 6well multiwell plate

for suspension culture (Greiner Bio-One 657185) with 5ml of IVC1 (with FBS at 30% v/v) per well. On day 5 IVC1 was replaced with

fresh IVC2 (30% Knockout Serum Replacement instead of FBS, Thermo Fisher 10828010).

Chimera
To generate chimeras using CAG-GFP tetO-Gata4 ESCs andmouse embryos, Doxycycline was first added to CAG-GFP tetO-Gata4

ESCs 6 hours prior to the experiment. Mouse embryos at E2.5 before compaction were recovered from F1 females that were super-

ovulated by injection of 7.5 IU of pregnantmares’ serumgonadotropin (Intervet) and 7.5 IU of human chorionic gonadotropin (Intervet)

after 48 hours and were mated with F1 males. Embryos were recovered in M2 medium by flushing the oviducts. After transferring to

KSOM (Millipore MR-020P-5F), the embryos were cultured in the incubator at 37�C in 5% CO2. Meanwhile, CAG-GFP tetO-Gata4

ESCs were dissociated by 2 minutes of trypsinisation at 37�C and the resulting cell clumps were aggregated with the recovered em-

bryos in KSOM. The chimeras were cultured for 48 hours until E4.5.

Nodal Inhibitory Treatment
iETX embryos were collected at day 4 and incubated in SB431542 (STEMCELL Technologies 72234) for 24 hours at a concentration

of 10 mM (Kyprianou et al., 2020). Following Nodal inhibitor treatment, they were fixed and processed for immunofluores-

cence (below).

Live Imaging
Live imaging was performed using an SP8 scanning confocal microscope with a 25X objective. iETX embryos were imaged on a

glass-bottom dish and were kept in a humidified chamber with 5.6% CO2 and 21% O2 during the imaging. Images were captured

every 20minutes (AVEmigration and gastrulationmovies) with a z-step of 2 mm. For self-organizationmovies, cells were imaged after

seeding on Gri3D PEG-hydrogel dishes provided by SunBioscience (Geneva, Switzerland), set up according to the manufacturer’s

guidelines and samples were imaged every 60 minutes. Samples were imaged on a Zeiss Axiovert 200M connected to a 3i CSU-W

Spinning Disk Confocal system with an OBIS 488nm and an OBIS 561-nm LS laser and exported using Slidebook.

Plasmids and Transfection
Gata4 cDNAwas PCR-amplified from pSAM2-mCherry-Gata4 using the Gata4/AttB primers (see Key Resources Table). The primers

were designed as outlined in the Gateway cloning manual. Because the plasmid already contained attB sites, there was no need to

incorporate parts of the Gata4 open reading frame in the primer design. pSAM2-mCherry-Gata4 was a gift from Timothy Kamp (Stem

Cell and Regenerative Medicine Centre, University of Wisconsin – Madison, USA; Addgene plasmid # 72690; http://n2t.net/

addgene:72690; RRID:Addgene_72690, (Lalit et al., 2016)). It was subsequently cloned into PB-tetO-hygromycin by Gateway tech-

nology (Thermo Fisher Scientific), according to themanufacturer’s instructions. Cloneswere verified by sequencing. Transformations

were performed using 5a-competent E.coli following the manufacturer’s guidelines (New England Biolabs C2987I). To generate

ESCs with Doxycycline inducible Gata4, PB-tetO-hygro-Gata4, pBAse and rtTA-zeocyin (0.25 mg/each/reaction) were transfected

into 12,000 CAG-GFP ESCs using Lipofectamine 3000 Transfection Reagent (Invitrogen L3000001), followed by antibiotics selection

for 7 days with hygromycin (1:250; Gibco 10687010) and zeocyin (1:1000; InvivoGen ant-zn-1). The PB-tetO-hygro, pBAse and rtTA-

zeocyin were generously gifted by Dr. José Silva (Stem Cell Institute, Cambridge, UK).

RNA Extraction and qRT-PCR
Total RNA from cell pellet was extracted using Trizol Reagent (Invitrogen 15596-026) and reverse transcribed into cDNA using Quan-

tiTect Reverse Transcription Kit (Qiagen 205310) according to themanufacturer’s instructions. qRT-PCRwas performed using SYBR

Green PCRMaster Mix (Applied Biosystems 4368708) and StepOnePlus Real-Time PCR System (Applied Biosystems). Fold change

in Gata4mRNA expression was determined by DDCt method using Gapdh as endogenous control. See Table for Gapdh and Gata4

(Boroviak et al., 2014) primer sequences.
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Immunofluorescence
iETX embryos and natural mouse embryos were fixed with 4% paraformaldehyde at room temperature for 20 minutes and washed

with PBST (PBSwith 0.1% Tween 20) for three times for 5minutes each. Samples were then permeabilised in permeabilization buffer

(0.1 M glycine and 0.3% Triton X-100 in PBS) for 30 minutes at room temperature, followed by three washes with PBST for 5 minutes.

Samples were incubated with primary antibodies diluted in blocking buffer (10% FBS and 0.1% Tween 20 in PBS) at 4�C overnight.

After washing with PBST for three times for 5 minutes, samples were incubated with secondary antibodies at 4�C overnight or for 2

hours at room temperature followed by another three washes with PBST for 5 minutes before imaging.

scRNA-seq Sample Preparation and Dissociation
After recovery, natural embryos and iETX embryos were cut to pieces, transferred to a Falcon tube, centrifuged, washed in PBS and

incubated in Tryple Express (Gibco 12604013) for 15 minutes at 37�C, with vigorous pipetting every 5 minutes to dissociate to single

cells. If there were clumps left, the incubation was extended for an additional 5 minutes at 37�C and the sample was pipetted further.

Samples were filtered to remove large clumps, centrifuged at 200 x g for 5 minutes and resuspended in PBST (PBS with 0.02%

Tween20) and then processed for incapsulation (see below). For E5.5 and E6.5, 1 full litter was dissociated (12 embryos). For ETX

embryos and iETX embryos, 15 samples each were dissociated. Single cell sequencing data from 20 E4.5 blastocysts was obtained

from (Sozen et al., 2019, GEO: GSE134240).

scRNA-seq Library Preparation and Sequencing
Libraries were prepared according to the inDrops workflow (Klein et al., 2015; Zilionis et al., 2017) with v3 barcoding scheme (Briggs

et al., 2018). Briefly, polyacrylamide beads were generated and barcoded to obtain a diversity of 147,456 barcodes. Single-cell sus-

pensions were diluted to a concentration of 120,000 cells per ml and co-encapsulated with the barcoded beads and reverse tran-

scriptase and lysis mix. Fractions of �2,900 cells were collected in 1.5 ml Eppendorf tubes pre-filled with 200 ml of mineral oil and

incubated at 50�C for 2 hours and 70�C for 20 minutes. The droplets were then de-emulsified and further amplified using second-

strand synthesis and in vitro transcription. The libraries were then fragmented and reverse transcribed. The final libraries were ampli-

fied using limited-cycle PCR and quantified using a Qubit High sensitivity and Bioanalyzer High sensitivity DNA kits. Libraries were

pooled at equi-molar ratios and purified using a 1.5x volumetric ratio of AmpureXP beads. The libraries were sequenced on aNextseq

75 cycle 400M read High Output kit with 5%PhiX spike-in as an internal control. The read cycle distribution was the following: Read1:

61 cycles; Index1: 8 cycles; Index2: 8 cycles; Read2: 14 cycles.

Quantification and statistical analysis

Inclusion Criteria of iETX embryos
All iETX embryos were collected from AggreWell for analysis at 3, 4 or 5 days of development and analysed under a stereo micro-

scope. In all instances, we selected iETX embryos with cylindrical morphology, an epithelialized ES compartment with a lumen

and two clearly defined cellular compartments surrounded by an outer cell layer. The TS compartment is more variable in appearance

and therefore, even though one would also want an epithelial-looking TS compartment similar to the extra-embryonic ectoderm of

natural embryos, we select a wider range of appearances for the TS compartment. After this initial selection, structures containing the

appropriate fluorophores were quickly checked under a microscope to ensure the presence of an epithelialized CAG-GFP-positive

ES compartment. iETX embryoswith the correct body plan of ES and TS compartments surrounded by a visceral endoderm-like layer

are then transferred to equilibrated media to continue their culture. When selecting at day 5, however, we expect the lumen of the ES

and TS compartment to be merged. We provide visual examples of what we consider good iETX embryos at day 4 in Figure 2B.

iETX embryo Cell Lineage Quantification
Cell lineage quantifications were performed using the ‘‘Spot’’ function in Imaris (Bitplane). For the VE-like layer, the spots were set at a

diameter of 9 mm. For ESCs and TS cells the spots were set at a diameter of 6 mm. Following automatic detection, the spots were

manually curated to remove erroneous cell calls and to include cells that were missed. Because of the loss of resolution past the

midpoint of the iETX embryos, cells were only quantified up to the midpoint of each iETX embryo and then the number of cells ob-

tained was multiplied by 2 to obtain the total number of cells.

Image Acquisition, Processing and Analysis
Images were acquired using Leica SP5 and SP8 confocal microscopes (Leica Microsystems) with 403 oil objective and 253 water

objective, respectively. A 405 nm diode laser (DAPI), a 488 nm argon laser (Alexa Fluor 488), a 543 nm HeNe laser (Alexa Fluor 568)

and a 633 nm HeNe laser (Alexa Fluor 647) were used to excite the fluorophores. Images were taken with a z-step of 1.2-5mm. Fiji

(Schindelin et al., 2012) and NDSAFIR 3.0 (Boulanger et al., 2010), Photoshop and the Smart Denoise (Gurdon Institute) were

used to process and analyse the images. In Figure 4A, the Bry antibody in the natural embryo shown had strong non-specific mem-

brane signal, which has been reported elsewhere (Morgani et al., 2018). To reduce the background signal, we used the Oct4 signal in

that image to create amask of the epiblast and subtract the Bry background from the nuclear signal. This is the only case in which we

have edited an image this way.
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Tracking of AVE Migration
Images from time lapse video were processed with Fiji. To correct for the drifting of iETX-embryo during imaging, images were first

aligned using StackReg plugin (Thévenaz et al., 1998), MultiStackReg (Brad Busse, Division of Program Coordination, Planning and

Strategic Initiatives, NIH - USA) and Template Matching and Slice Alignment plugin (Qingzong Tseng, Aix-Marseille Université,

France). The movements of individual Cerl-GFP-positive cells were then tracked with Manual Tracking plugin which generated

the migration trajectories. The plugin also produced a table of the coordinates of the tracked cells in each time frame which was later

imported to Chemotaxis and Migration Tool (iBidi) to calculate the migration directionality and migration speed. The polar histogram

of migration directionality was generated using R.

Quantification of Cerl-GFP Fluorescence
In Fiji, a rectangle encompassing the length of the ES compartment and wide enough to contain all the Cerl-GFP positive cells was

drawn over a day 5 iETX embryo. Using the plot function, signal intensity as a function of distance was obtained and exported. The

same area was sequentially used to export Cerl-GFP, Eomes, Phalloidin and DAPI intensities for each iETX embryo. If a single Cerl-

GFP peak was observed on one side of the iETX embryo, the Cerl-GFP signal was considered asymmetric, otherwise it was consid-

ered symmetric. To normalize the length of the structure, each point of the length was divided by the total length of the ES

compartment. To normalize the fluorescence, each fluorescence value was divided by the highest fluorescence value. Normalised

samples were combined (asymmetric with asymmetric and symmetric with symmetric) and displayed as a Lowess curve generated

in Prism.

scRNA-seq Bioinformatic Analysis
The BCL files were converted to Fastq files using Illumina’s bcl2fastq software. The sequenced libraries were quality-inspected using

the FastQC tool (Andrews, 2010) and de-multiplexed using the Pheniqs tool frombiosails. The fastq fileswere further filtered, mapped

to a mouse GRCm38 reference genome with GRCm38.99 gtf annotation and deduplicated using the zUMIs pipeline (Parekh et al.,

2018). The count matrices were then imported in Scanpy (Wolf et al., 2018) using the scanpy.read() function. The Scrublet module

(Wolock et al., 2019) was used to predict doublet scores. Cells with predicted doublet scores lower than 0.2 and with gene counts

higher than 1,200 were then selected. The filtered matrices were then concatenated after being converted to a sparse format using

the csr_matrix() function from SciPy (Virtanen et al., 2020). Cells were further filtered on ribosomal RNA (percentage of readsmapping

to ribosomal RNA between 2.5% and 10%) and mitochondrial RNA content (percentage of reads mapping to mitochondrial RNA be-

tween 2% and 12%). The matrix was then normalized, regressed out for number of UMI counts, ribosomal RNA and mitochondrial

RNA content using the scanpy.pp.regress_out() function, scaled and a UMAP dimensional reduction was computed. To plot the cor-

relation between ETX, iETX, E4.5, E5.5 and E6.5 and to match the sample size and number of cells per lineage of E4.5 (E4.5 dataset

was from (Sozen et al., 2019)), each sample was downsampled to randomly contain 41 cells from the endoderm lineage, 33 cells from

the embryo lineage and 22 cells from the trophectoderm lineage. Correlation matrices were computed with scanpy.pl.correlation_-

matrix function using Pearson correlation. For cell type annotation, a combination of leiden clustering (obtained using scanpy.tl.lei-

den) and a marker-based approach based on Pijuan-Sala et al.’s (Pijuan-Sala et al., 2019) annotations was utilised with the following

normalized marker expression levels: 1) parietal endoderm annotation for iETX cells of the endoderm compartment with Lamb1

expression higher than 3.5, 2) primitive streak annotation for cells of the embryo compartment with Nanog and Eomes expression

level higher than 1.5, 3) nascent mesoderm annotation for cells of the embryo compartment with Mesp1 expression level higher

than 1.5, 4) Visceral endoderm cells from iETX embryos with Otx2 expression level higher than 1.5, 5) ExE and differentiating ExE

annotations were given according to the resulting leiden clustering and also using Cdx2 for the trophoblast stem cells/extraembry-

onic ectoderm cells and Gata2 for the differentiated trophoblast cell types (see Figure S7A).

To perform pairwise analysis of differentially expressed genes, the matrices and annotations were loaded into Seurat v3 (Stuart

et al., 2019) and pairwise marker comparisons were obtained with a Wilcoxon Rank Sum test using the FindMarkers function. Differ-

entially expressed genes were then plotted in Prism GraphPad to generate volcano plots. Single-cell sequencing data are available

on GEO (Gene Expression Omnibus) under accession GSE161947 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE161947) and the code used in these analyses is available at https://github.com/fhlab/scRNAseq_inducedETX.

Gene Ontology
Gene Ontology was performed using the online platform DAVID (Huang et al., 2009b, 2009a). Differentially expressed genes from

pairwise comparisons were selected by choosing genes with an adjusted p value < 0.05 and enriched in one sample or the other

of the pairwise comparison. The list was then uploaded in the DAVID user interface and analysedwith theGene Functional Annotation

Clustering tool and the Gene Functional Annotation Table. The first 10 clusters with the highest Enrichment Score (-log p value) were

graphed. For the Wnt signalling category identified as enriched in the VE-like layer in comparison with the XEN layer, Wnt-related

function of the genes in the list was found using the annotations of the Uniprot database (2019) and provided in Table S2.

Statistics
All statistical analyses were performed with GraphPad Prism 8 software. Quantitative data were presented as mean ± SD or SEM as

indicated in figure legends or as violin plots with median and quartiles. Prior to statistical significance testing, data were tested for

normal distribution with the Shapiro-Wilk test. For normally distributed data, the unpaired or paired Student’s t test was used for
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2 groups and One-Way ANOVA with Tukey’s multiple comparison post-hoc test for more than 2 groups. For data that did not follow a

normal distribution, Mann-Whitney non-parametric test was used for 2 groups andOne-Way ANOVA followed by Kruskal-Wellis non-

parametric post-hoc test for more than 2 groups. Wilcoxon matched pairs signed rank test was used for non-parametric paired anal-

ysis. A p value < 0.05 was considered significant. Sample size and the number of experimental replicates (n) is indicated in the rele-

vant figure legend. Sample size was not predetermined. For the supplemental figure, the statistical test utilised and the exact p values

are in the relevant figure legend. For the main figures, the statistical test utilised and the exact p values are shown below:

Figure 1: A. Unpaired Student’s t test: N2B27 2iLIF: p = 0.0218, FC 2iLIF: p < 0.0001, IDG 2iLIF: p = 0.0020. B. One-way ANOVA,

Kruskal-Wallis post-hoc test, p < 0.0001. D. Unpaired Student’s t test, p < 0.0001

Figure 2: C.Unpaired Student’s t test p=0.0052. J. One-Way ANOVA; ES compartment, Epiblast (ES/EPI): Tukey post-hoc. **** p <

0.0001. TS compartment, Extraembryonic ectoderm (TS/ExE): Tukey post-hoc.* p = 0.0236. XEN layer, VE-like layer and visceral

endoderm (XEN/VE): Kruskal-Wallis post-hoc.** p = 0.0077, **** p < 0.0001.

Figure 3: E.Unpaired Student’s t test p = 0.0071. F.Unpaired Student’s t test p = 0.0478.G.Unpaired Student’s t test p = 0.0079.H.

Mann-Whitney test p = 0.0003. I.Mann-Whitney test p = ns. J. Student’s t test p = 0.0407. L. One-Way ANOVA p < 0.0001, Kruskal-

Wallis post-hoc test. **** p < 0.0001, ** p = 0.0033. N. Unpaired Student’s t test p = 0.033. O. Unpaired Student’s t test p = ns. P.

Unpaired Student’s t test p = 0.0194.

Figure 4: D. One-way ANOVA, p < 0.0001; Tukey’s multiple comparison post-hoc test: opposite vs Same and Distal, p < 0.0001;

Distal vs Same p = ns. F. One-Way ANOVA p<0.0001; Tukey’s multiple comparison post-hoc test: opposite vs Same andOpposite vs

Distal p < 0.0001, Same vs Distal p = ns. H. One-Way ANOVA p < 0.0001; Tukey’s multiple comparison post-hoc test: opposite vs

Same and Opposite vs Distal p < 0.0001, Same vs Distal p = ns. J. One-Way ANOVA p = 0.0002; Tukey’s multiple comparison post-

hoc test: ectopic vs non-ectopic p = 0.0011; ectopic vs. distal p = 0.0007.

Figure 5: E.Multiple t tests, p < 0.000001.H.Unpaired t test: Bry p < 0.0001, N-Cad p = 0.0049, E-Cad p = 0.0207. I. (left) One-Way

ANOVA and Tukey multiple comparison, **** p < 0.0001, ** p = 0.0022. (right) Wilcoxon matched pairs signed rank test, * p = 0.0178.
e9 Developmental Cell 56, 1–17.e1–e9, February 8, 2021
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