2 research outputs found

    Statistical properties of DNA sequences revisited: the role of inverse bilateral symmetry in bacterial chromosomes

    Full text link
    Herein it is shown that in order to study the statistical properties of DNA sequences in bacterial chromosomes it suffices to consider only one half of the chromosome because they are similar to its corresponding complementary sequence in the other half. This is due to the inverse bilateral symmetry of bacterial chromosomes. Contrary to the classical result that DNA coding regions of bacterial genomes are purely uncorrelated random sequences, here it is shown, via a renormalization group approach, that DNA random fluctuations of single bases are modulated by log-periodic variations. Distance series of triplets display long-range correlations in each half of the intact chromosome and in intronless protein-coding sequences, or both long-range correlations and log-periodic modulations along the whole chromosome. Hence scaling analyses of distance series of DNA sequences have to consider the functional units of bacterial chromosomes.Comment: 27 pages, 9 figure

    On the Evolution of the Standard Genetic Code: Vestiges of Critical Scale Invariance from the RNA World in Current Prokaryote Genomes

    Get PDF
    Herein two genetic codes from which the primeval RNA code could have originated the standard genetic code (SGC) are derived. One of them, called extended RNA code type I, consists of all codons of the type RNY (purine-any base-pyrimidine) plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. In order to test if putative nucleotide sequences in the RNA World and in both extended RNA codes, share the same scaling and statistical properties to those encountered in current prokaryotes, we used the genomes of four Eubacteria and three Archaeas. For each prokaryote, we obtained their respective genomes obeying the RNA code or the extended RNA codes types I and II. In each case, we estimated the scaling properties of triplet sequences via a renormalization group approach, and we calculated the frequency distributions of distances for each codon. Remarkably, the scaling properties of the distance series of some codons from the RNA code and most codons from both extended RNA codes turned out to be identical or very close to the scaling properties of codons of the SGC. To test for the robustness of these results, we show, via computer simulation experiments, that random mutations of current genomes, at the rates of 10−10 per site per year during three billions of years, were not enough for destroying the observed patterns. Therefore, we conclude that most current prokaryotes may still contain relics of the primeval RNA World and that both extended RNA codes may well represent two plausible evolutionary paths between the RNA code and the current SGC
    corecore