8 research outputs found
Siglec-6 is a novel target for CAR T-cell therapy in acute myeloid leukemia
Acute myeloid leukemia (AML) is an attractive entity for the development of chimeric antigen receptor (CAR) T-cell immunotherapy because AML blasts are susceptible to T-cell–mediated elimination. Here, we introduce sialic acid–binding immunoglobulin-like lectin 6 (Siglec-6) as a novel target for CAR T cells in AML. We designed a Siglec-6–specific CAR with a targeting domain derived from the human monoclonal antibody JML-1. We found that Siglec-6 is commonly expressed on AML cell lines and primary AML blasts, including the subpopulation of AML stem cells. Treatment with Siglec-6 CAR T cells confers specific antileukemia reactivity that correlates with Siglec-6 expression in preclinical models, including induction of complete remission in a xenograft AML model in immunodeficient mice (NSG/U937). In addition, we confirmed Siglec-6 expression on transformed B cells in chronic lymphocytic leukemia (CLL), and specific anti-CLL reactivity of Siglec-6 CAR T cells in vitro. Of particular interest, we found that Siglec-6 is not detectable on normal hematopoietic stem and progenitor cells (HSPCs) and that treatment with Siglec-6 CAR T cells does not affect their viability and lineage differentiation in colony-formation assays. These data suggest that Siglec-6 CAR T-cell therapy may be used to effectively treat AML without the need for subsequent allogeneic hematopoietic stem cell transplantation. In mature normal hematopoietic cells, we detected Siglec-6 in a proportion of memory (and naïve) B cells and basophilic granulocytes, suggesting the potential for limited on-target/off-tumor reactivity. The lack of expression of Siglec-6 on normal HSPCs is a key to differentiating it from other Siglec family members (eg, Siglec-3 [CD33]) and other CAR target antigens (eg, CD123) that are under investigation in AML, and it warrants the clinical investigation of Siglec-6 CAR T-cell therapy
Single-Cell DNA Sequencing and Immunophenotypic Profiling to Track Clonal Evolution in an Acute Myeloid Leukemia Patient
Single-cell DNA sequencing can address the sequence of somatic genetic events during myeloid transformation in relapsed acute myeloid leukemia (AML). We present an NPM1-mutated AML patient with an initial low ratio of FLT3-ITD (low-risk ELN-2017), treated with midostaurin combined with standard chemotherapy as front-line treatment, and with salvage therapy plus gilteritinib following allogenic stem cell transplantation after relapse. Simultaneous single-cell DNA sequencing and cell-surface immunophenotyping was used in diagnostic and relapse samples to understand the clinical scenario of this patient and to reconstruct the clonal composition of both tumors. Four independent clones were present before treatment: DNMT3A/DNMT3A/NPM1 (63.9%), DNMT3A/DNMT3A (13.9%), DNMT3A/DNMT3A/NPM1/FLT3 (13.8%), as well as a wild-type clone (8.3%), but only the minor clone with FLT3-ITD survived and expanded after therapy, being the most represented one (58.6%) at relapse. FLT3-ITD was subclonal and was found only in the myeloid blast population (CD38/CD117/CD123). Our study shows the usefulness of this approach to reveal the clonal architecture of the leukemia and the identification of small subclones at diagnosis and relapse that may explain how the neoplastic cells can escape from the activity of different treatments in a stepwise process that impedes the disease cure despite different stages of complete remission.This research was funded by INSTITUTO DE SALUD CARLOS III (ISCIII), grants PI18/01946 (Co-funded by European Regional Development Fund “A way to make Europe”) and PI21/01705 (Co-funded by the European Union), and by the Accelerator Award Program (co-founders Cancer Research UK [C355/A26819], FC AECC and AIRC). M.G.-Á., C.J. and A.M.-H. were funded by the Spanish Society of Hematology Foundation (FEHH).Peer reviewe
Prognostic Value of Measurable Residual Disease in Patients with AML Undergoing HSCT: A Multicenter Study
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Allogeneic hematopoietic stem cell transplantation (HSCT) represents the best therapeutic option for many patients with acute myeloid leukemia (AML). However, relapse remains the main cause of mortality after transplantation. The detection of measurable residual disease (MRD) by multiparameter flow cytometry (MFC) in AML, before and after HSCT, has been described as a powerful predictor of outcome. Nevertheless, multicenter and standardized studies are lacking. A retrospective analysis was performed, including 295 AML patients undergoing HSCT in 4 centers that worked according to recommendations from the Euroflow consortium. Among patients in complete remission (CR), MRD levels prior to transplantation significantly influenced outcomes, with overall (OS) and leukemia free survival (LFS) at 2 years of 76.7% and 67.6% for MRD-negative patients, 68.5% and 49.7% for MRD-low patients (MRD < 0.1), and 50.5% and 36.6% for MRD-high patients (MRD ≥ 0.1) (p < 0.001), respectively. MRD level did influence the outcome, irrespective of the conditioning regimen. In our patient cohort, positive MRD on day +100 after transplantation was associated with an extremely poor prognosis, with a cumulative incidence of relapse of 93.3%. In conclusion, our multicenter study confirms the prognostic value of MRD performed in accordance with standardized recommendations.This work was supported by Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria Fondo de Investigación en Salud (proyect PI17/02283), Red de terapia celular (TERCEL RD16/0011/0035), and RICORS (RD21/0017/0016).Peer reviewe
Basophil-lineage commitment in acute promyelocytic leukemia predicts for severe bleeding after starting therapy
Severe hemorrhagic events occur in a significant fraction of acute promyelocytic leukemia patients, either at presentation and/or early after starting therapy, leading to treatment failure and early deaths. However, identification of independent predictors for high-risk of severe bleeding at diagnosis, remains a challenge. Here, we investigated the immunophenotype of bone marrow leukemic cells from 109 newly diagnosed acute promyelocytic leukemia patients, particularly focusing on the identification of basophil-related features, and their potential association with severe bleeding episodes and patient overall survival. From all phenotypes investigated on leukemic cells, expression of the CD203c and/or CD22 basophil-associated markers showed the strongest association with the occurrence and severity of bleeding (p ≤ 0.007); moreover, aberrant expression of CD7, coexpression of CD34+/CD7+ and lack of CD71 was also more frequently found among patients with (mild and severe) bleeding at baseline and/or after starting treatment (p ≤ 0.009). Multivariate analysis showed that CD203c expression (hazard ratio: 26.4; p = 0.003) and older age (hazard ratio: 5.4; p = 0.03) were the best independent predictors for cumulative incidence of severe bleeding after starting therapy. In addition, CD203c expression on leukemic cells (hazard ratio: 4.4; p = 0.01), low fibrinogen levels (hazard ratio: 8.8; p = 0.001), older age (hazard ratio: 9.0; p = 0.002), and high leukocyte count (hazard ratio: 5.6; p = 0.02) were the most informative independent predictors for overall survival. In summary, our results show that the presence of basophil-associated phenotypic characteristics on leukemic cells from acute promyelocytic leukemia patients at diagnosis is a powerful independent predictor for severe bleeding and overall survival, which might contribute in the future to (early) risk-adapted therapy decisions.This work was supported by the Fundación Científica de la Asociación Española Contra el Cáncer (AECC, Madrid, Spain) and the Fundación Rafael del Pino (Madrid, Spain) and both CIBERONC (CB16/12/00400, CB16/12/00233, CB16/12/00480) and grant PI16/00787 from Instituto de Salud Carlos III (Ministerio de Economía y Competitividad, Madrid, Spain)
Baseline immunophenotypic profile of bone marrow leukemia cells in acute myeloid leukemia with nucleophosmin-1 gene mutation: a EuroFlow study
Molecular techniques are the gold standard method for the diagnosis of AML with mutated nucleophosmin gene (NPM1mut). However, their worldwide availability is limited and they provide limited insight into disease heterogeneity. Hence, surrogate markers of NPM1mut are used for fast diagnostic screening of the disease [1], including, among others, immunohistochemical detection of cytoplasmic NPM1 (NPM1c) [2], cup-like nuclear morphology [3], normal karyotype, and/or recurrent flow cytometry profiles -e.g., CD34 negativity, and/or a phenotype resembling acute promyelocytic leukemia (APL)- [4]. Nevertheless, some of these methods are also not widely available, they show limited sensitivity (e.g., low or absent NPM1c expression, particularly among monoblastic/monocytic AML-NPM1mut) [5], frequently lack standardized procedures [1], and they might also bring limited information about disease heterogeneity.This study has been funded by Instituto de Salud Carlos III (ISCIII) through the project PI21/01115 and co-funded by the European Union and the grant of CIBERONC of the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain, and FONDOS FEDER (no. CB16/12/00400); MR was supported by the Ministry of Health of the Czech Republic, grant number NU20J-07-00028.Peer reviewe
Prognostic value of measurable residual disease in patients with AML undergoing HSCT: a multicenter study
Allogeneic hematopoietic stem cell transplantation (HSCT) represents the best therapeutic option for many patients with acute myeloid leukemia (AML). However, relapse remains the
main cause of mortality after transplantation. The detection of measurable residual disease (MRD)
by multiparameter flow cytometry (MFC) in AML, before and after HSCT, has been described
as a powerful predictor of outcome. Nevertheless, multicenter and standardized studies are
lacking. A retrospective analysis was performed, including 295 AML patients undergoing HSCT
in 4 centers that worked according to recommendations from the Euroflow consortium. Among
patients in complete remission (CR), MRD levels prior to transplantation significantly influenced
outcomes, with overall (OS) and leukemia free survival (LFS) at 2 years of 76.7% and 67.6% for
MRD-negative patients, 68.5% and 49.7% for MRD-low patients (MRD < 0.1), and 50.5% and 36.6%
for MRD-high patients (MRD ≥ 0.1) (p < 0.001), respectively. MRD level did influence the outcome,
irrespective of the conditioning regimen. In our patient cohort, positive MRD on day +100 after
transplantation was associated with an extremely poor prognosis, with a cumulative incidence
of relapse of 93.3%. In conclusion, our multicenter study confirms the prognostic value of MRD
performed in accordance with standardized recommendations
Basophil-lineage commitment in acute promyelocytic leukemia predicts for severe bleeding after starting therapy.
Severe hemorrhagic events occur in a significant fraction of acute promyelocytic leukemia patients, either at presentation and/or early after starting therapy, leading to treatment failure and early deaths. However, identification of independent predictors for high-risk of severe bleeding at diagnosis, remains a challenge. Here, we investigated the immunophenotype of bone marrow leukemic cells from 109 newly diagnosed acute promyelocytic leukemia patients, particularly focusing on the identification of basophil-related features, and their potential association with severe bleeding episodes and patient overall survival.From all phenotypes investigated on leukemic cells, expression of the CD203c and/or CD22 basophil-associated markers showed the strongest association with the occurrence and severity of bleeding (p ≤ 0.007); moreover, aberrant expression of CD7, coexpression of CD34+/CD7+ and lack of CD71 was also more frequently found among patients with (mild and severe) bleeding at baseline and/or after starting treatment (p ≤ 0.009). Multivariate analysis showed that CD203c expression (hazard ratio: 26.4; p = 0.003) and older age (hazard ratio: 5.4; p = 0.03) were the best independent predictors for cumulative incidence of severe bleeding after starting therapy. In addition, CD203c expression on leukemic cells (hazard ratio: 4.4; p = 0.01), low fibrinogen levels (hazard ratio: 8.8; p = 0.001), older age (hazard ratio: 9.0; p = 0.002), and high leukocyte count (hazard ratio: 5.6; p = 0.02) were the most informative independent predictors for overall survival.In summary, our results show that the presence of basophil-associated phenotypic characteristics on leukemic cells from acute promyelocytic leukemia patients at diagnosis is a powerful independent predictor for severe bleeding and overall survival, which might contribute in the future to (early) risk-adapted therapy decisions