20,081 research outputs found

    The Agent Orange Veteran Payment Program

    Get PDF

    Silicon solar cells improved by lithium doping

    Get PDF
    Results of conference on characteristics of lithium-doped silicon solar cells and techniques required for fabrication indicate that output of cells has been improved to point where cells exhibit radiation resistance superior to those currently in use, and greater control and reproducibility of cell processing have been achieved

    Non-Resonant Effects in Implementation of Quantum Shor Algorithm

    Get PDF
    We simulate Shor's algorithm on an Ising spin quantum computer. The influence of non-resonant effects is analyzed in detail. It is shown that our ``2πk2\pi k''-method successfully suppresses non-resonant effects even for relatively large values of the Rabi frequency.Comment: 11 pages, 13 figure

    Development of lithium doped radiation resistent solar cells

    Get PDF
    Lithium-doped solar cells have been fabricated with initial lot efficiencies averaging 11.9 percent in an air mass zero (AMO) solar simulator and a maximum observed efficiency of 12.8 percent. The best lithium-doped solar cells are approximately 15 percent higher in maximum power than state-of-the-art n-p cells after moderate to high fluences of 1-MeV electrons and after 6-7 months exposure to low flux irradiation by a Sr-90 beta source, which approximates the electron spectrum and flux associated with near Earth space. Furthermore, lithium-doped cells were found to degrade at a rate only one tenth that of state-of-the-art n-p cells under 28-MeV electron irradiation. Excellent progress has been made in quantitative predictions of post-irradiation current-voltage characteristics as a function of cell design by means of capacitance-voltage measurements, and this information has been used to achieve further improvements in lithium-doped cell design

    Considerations with respect to the design of solar photovoltaic power systems for terrestrial applications

    Get PDF
    The various factors involved in the development of solar photovoltaic power systems for terrestrial application are discussed. The discussion covers the tradeoffs, compromises, and optimization studies which must be performed in order to develop a viable terrestrial solar array system. It is concluded that the technology now exists for the fabrication of terrestrial solar arrays but that the economics are prohibitive. Various approaches to cost reduction are presented, and the general requirements for materials and processes to be used are delineated

    Effects of lithium doping on the behavior of silicon and silicon solar cells

    Get PDF
    Lithium doped silicon solar cells for improved radiation resistance to neutrons, protons, and electron

    Stability of the Ground State of a Harmonic Oscillator in a Monochromatic Wave

    Full text link
    Classical and quantum dynamics of a harmonic oscillator in a monochromatic wave is studied in the exact resonance and near resonance cases. This model describes, in particular, a dynamics of a cold ion trapped in a linear ion trap and interacting with two lasers fields with close frequencies. Analytically and numerically a stability of the ``classical ground state'' (CGS) -- the vicinity of the point (x=0,p=0x=0, p=0) -- is analyzed. In the quantum case, the method for studying a stability of the quantum ground state (QGS) is suggested, based on the quasienergy representation. The dynamics depends on four parameters: the detuning from the resonance, δ=Ω/ω\delta=\ell-\Omega/\omega, where Ω\Omega and ω\omega are, respectively, the wave and the oscillator's frequencies; the positive integer (resonance) number, \ell; the dimensionless Planck constant, hh, and the dimensionless wave amplitude, ϵ\epsilon. For δ=0\delta=0, the CGS and the QGS are unstable for resonance numbers =1,2\ell=1, 2. For small ϵ\epsilon, the QGS becomes more stable with increasing δ\delta and decreasing hh. When ϵ\epsilon increases, the influence of chaos on the stability of the QGS is analyzed for different parameters of the model, \ell, δ\delta and hh.Comment: RevTeX, 38 pages, 24 figure

    On the Machian Origin of Inertia

    Full text link
    We examine Sciama's inertia theory: we generalise it, by combining rotation and expansion in one unique model, we find the angular speed of the Universe, and we stress that the theory is zero-total-energy valued. We compare with other theories of the same null energy background. We determine the numerical value of a constant which appears in the Machian inertial force expression devised by Graneau and Graneau[2], by introducing the above angular speed. We point out that this last theory is not restricted to Newtonian physics as those authors stated but is, in fact, compatible with other cosmological and gravitational theories. An argument by Berry[7] is shown in order to "derive" Brans-Dicke relation in the present context.Comment: 10 pages including front one. New version was accepted to publication by Astrophysics and Space Scienc
    corecore