11 research outputs found
External quality assessment of SARS-CoV-2-sequencing: An ESGMD-SSM pilot trial across 15 European laboratories
Objective: This first pilot on external quality assessment (EQA) of SARS-CoV-2 whole genome sequencing, initiated by the ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD) and Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing.Methods: Ten samples with varying viral loads were sent out to 15 clinical laboratories who had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centres were compared on were identification of 1) SNPs and indels, 2) Pango lineages, and 3) clusters between samples.Results: The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to varying depth (up to 100-fold difference across centres). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignment. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data.Conclusions: The pilot EQA was an overall success. It was able to show the high quality of participating labs and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.</p
Identification of SARS-CoV-2 Variants of Concern Using Amplicon Next-Generation Sequencing
The manuscript described SARS-Cov-2 genotyping by VOC-NGS, which presents an ideal balance of accuracy, rapidity, and cost for detecting and globally tracking VOCs and some VOI of SARS-CoV-2. A large number of clinical samples can be tested together. Rapid introduction of new mutations at a specific site of the spike protein necessitates efficient strain detection and identification to enable choice of treatment and the application of vaccination, as well as planning public health policy.</jats:p
Genomic Characterization of Cisplatin Response Uncovers Priming of Cisplatin-Induced Genes in a Resistant Cell Line
Cisplatin is a chemotherapy drug that kills cancer cells by damaging their DNA. In human cells, this damage is repaired primarily by nucleotide excision repair. While cisplatin is generally effective, many cancers exhibit initial or acquired resistance to it. Here, we studied cisplatin resistance in a defined cell line system. We conducted a comprehensive genomic characterization of the cisplatin-sensitive A2780 ovarian cancer cell line compared to A2780cis, its resistant derivative. The resistant cells acquired less damage, but had similar repair kinetics. Genome-wide mapping of nucleotide excision repair showed a shift in the resistant cells from global genome towards transcription-coupled repair. By mapping gene expression changes following cisplatin treatment, we identified 56 upregulated genes that have higher basal expression in the resistant cell line, suggesting they are primed for a cisplatin response. More than half of these genes are novel to cisplatin- or damage-response. Six out of seven primed genes tested were upregulated in response to cisplatin in additional cell lines, making them attractive candidates for future investigation. These novel candidates for cisplatin resistance could prove to be important prognostic markers or targets for tailored combined therapy in the future.</jats:p
Genomic Characterization of Cisplatin Response Uncovers Priming of Cisplatin-Induced Genes in a Resistant Cell Line
Cisplatin is a chemotherapy drug that kills cancer cells by damaging their DNA. In human cells, this damage is repaired primarily by nucleotide excision repair. While cisplatin is generally effective, many cancers exhibit initial or acquired resistance to it. Here, we studied cisplatin resistance in a defined cell line system. We conducted a comprehensive genomic characterization of the cisplatin-sensitive A2780 ovarian cancer cell line compared to A2780cis, its resistant derivative. The resistant cells acquired less damage, but had similar repair kinetics. Genome-wide mapping of nucleotide excision repair showed a shift in the resistant cells from global genome towards transcription-coupled repair. By mapping gene expression changes following cisplatin treatment, we identified 56 upregulated genes that have higher basal expression in the resistant cell line, suggesting they are primed for a cisplatin response. More than half of these genes are novel to cisplatin- or damage-response. Six out of seven primed genes tested were upregulated in response to cisplatin in additional cell lines, making them attractive candidates for future investigation. These novel candidates for cisplatin resistance could prove to be important prognostic markers or targets for tailored combined therapy in the future
The sequential and cooperative action of CSB, CSA and UVSSA targets the TFIIH complex to DNA damage-stalled RNA polymerase II
Summary
The response to DNA damage-stalled RNA polymerase II (RNAPIIo) involves the
assembly of the transcription-coupled repair (TCR) complex on actively
transcribed strands. The function of the TCR proteins CSB, CSA and UVSSA and the
manner in which the core DNA repair complex, including transcription factor IIH
(TFIIH), is recruited are largely unknown. Here, we define the assembly
mechanism of the TCR complex in human isogenic knockout cells. We show that TCR
is initiated by RNAPIIo-bound CSB, which recruits CSA through a newly identified
CSA-interaction motif (CIM). Once recruited, CSA facilitates the association of
UVSSA with stalled RNAPIIo. Importantly, we find that UVSSA is the key factor
that recruits the TFIIH complex in a manner that is stimulated by CSB and CSA.
Together these findings reveal a sequential and highly cooperative assembly
mechanism of TCR proteins and reveal the mechanism for TFIIH recruitment to DNA
damage-stalled RNAPIIo to initiate repair.</jats:p
The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II
AbstractThe response to DNA damage-stalled RNA polymerase II (RNAPIIo) involves the assembly of the transcription-coupled repair (TCR) complex on actively transcribed strands. The function of the TCR proteins CSB, CSA and UVSSA and the manner in which the core DNA repair complex, including transcription factor IIH (TFIIH), is recruited are largely unknown. Here, we define the assembly mechanism of the TCR complex in human isogenic knockout cells. We show that TCR is initiated by RNAPIIo-bound CSB, which recruits CSA through a newly identified CSA-interaction motif (CIM). Once recruited, CSA facilitates the association of UVSSA with stalled RNAPIIo. Importantly, we find that UVSSA is the key factor that recruits the TFIIH complex in a manner that is stimulated by CSB and CSA. Together these findings identify a sequential and highly cooperative assembly mechanism of TCR proteins and reveal the mechanism for TFIIH recruitment to DNA damage-stalled RNAPIIo to initiate repair.</jats:p
SARS-CoV-2 Omicron Induces Enhanced Mucosal Interferon Response Compared to other Variants of Concern, Associated with Restricted Replication in Human Lung Tissues
SARS-CoV-2 Omicron variant has been characterized by decreased clinical severity, raising the question of whether early variant-specific interactions within the mucosal surfaces of the respiratory tract could mediate its attenuated pathogenicity. Here, we employed ex vivo infection of native human nasal and lung tissues to investigate the local-mucosal susceptibility and innate immune response to Omicron compared to Delta and earlier SARS-CoV-2 variants of concern (VOC). We show that the replication of Omicron in lung tissues is highly restricted compared to other VOC, whereas it remains relatively unchanged in nasal tissues. Mechanistically, Omicron induced a much stronger antiviral interferon response in infected tissues compared to Delta and earlier VOC-a difference, which was most striking in the lung tissues, where the innate immune response to all other SARS-CoV-2 VOC was blunted. Notably, blocking the innate immune signaling restored Omicron replication in the lung tissues. Our data provide new insights to the reduced lung involvement and clinical severity of Omicron
Publisher Correction: The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II
An amendment to this paper has been published and can be accessed via a link at the top of the paper.</jats:p
External quality assessment of SARS-CoV-2-sequencing: An ESGMD-SSM pilot trial across 15 European laboratories.
OBJECTIVE
This first pilot on external quality assessment (EQA) of SARS-CoV-2 whole genome sequencing, initiated by the ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD) and Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing.
METHODS
Ten samples with varying viral loads were sent out to 15 clinical laboratories who had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centres were compared on were identification of 1) SNPs and indels, 2) Pango lineages, and 3) clusters between samples.
RESULTS
The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to varying depth (up to 100-fold difference across centres). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignment. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data.
CONCLUSIONS
The pilot EQA was an overall success. It was able to show the high quality of participating labs and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment
External Quality Assessment of SARS-CoV-2 Sequencing: an ESGMD-SSM Pilot Trial across 15 European Laboratories
This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses.</jats:p
