409 research outputs found

    Scientific Workflow Applications on Amazon EC2

    Get PDF
    The proliferation of commercial cloud computing providers has generated significant interest in the scientific computing community. Much recent research has attempted to determine the benefits and drawbacks of cloud computing for scientific applications. Although clouds have many attractive features, such as virtualization, on-demand provisioning, and "pay as you go" usage-based pricing, it is not clear whether they are able to deliver the performance required for scientific applications at a reasonable price. In this paper we examine the performance and cost of clouds from the perspective of scientific workflow applications. We use three characteristic workflows to compare the performance of a commercial cloud with that of a typical HPC system, and we analyze the various costs associated with running those workflows in the cloud. We find that the performance of clouds is not unreasonable given the hardware resources provided, and that performance comparable to HPC systems can be achieved given similar resources. We also find that the cost of running workflows on a commercial cloud can be reduced by storing data in the cloud rather than transferring it from outside

    Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate cancer cells

    Get PDF
    Nucleosome positioning at transcription start sites is known to regulate gene expression by altering DNA accessibility to transcription factors; however, its role at enhancers is poorly understood. We investigated nucleosome positioning at the androgen receptor (AR) enhancers of TMPRSS2, KLK2, and KLK3/PSA in prostate cancer cells. Surprisingly, a population of enhancer modules in androgen-deprived cultures showed nucleosome-depleted regions (NDRs) in all three loci. Under androgen-deprived conditions, NDRs at the TMPRSS2 enhancer were maintained by the pioneer AR transcriptional collaborator GATA-2. Androgen treatment resulted in AR occupancy, an increased number of enhancer modules with NDRs without changes in footprint width, increased levels of histone H3 acetylation (AcH3), and dimethylation (H3K4me2) at nucleosomes flanking the NDRs. Our data suggest that, in the absence of ligand, AR enhancers exist in an equilibrium in which a percentage of modules are occupied by nucleosomes while others display NDRs. We propose that androgen treatment leads to the disruption of the equilibrium toward a nucleosome-depleted state, rather than to enhancer de novo β€œremodeling.” This allows the recruitment of histone modifiers, chromatin remodelers, and ultimately gene activation. The β€œreceptive” state described here could help explain AR signaling activation under very low ligand concentrations

    Expanding the MECP2 network using comparative genomics reveals potential therapeutic targets for Rett syndrome

    Get PDF
    Inactivating mutations in the Methyl-CpG Binding Protein 2 (MECP2) gene are the main cause of Rett syndrome (RTT). Despite extensive research into MECP2 function, no treatments for RTT are currently available. Here, we used an evolutionary genomics approach to construct an unbiased MECP2 gene network, using 1028 eukaryotic genomes to prioritize proteins with strong co-evolutionary signatures with MECP2. Focusing on proteins targeted by FDA-approved drugs led to three promising targets, two of which were previously linked to MECP2 function (IRAK, KEAP1) and one that was not (EPOR). The drugs targeting these three proteins (Pacritinib, DMF, and EPO) were able to rescue different phenotypes of MECP2 inactivation in cultured human neural cell types, and appeared to converge on Nuclear Factor Kappa B (NF-ΞΊB) signaling in inflammation. This study highlights the potential of comparative genomics to accelerate drug discovery, and yields potential new avenues for the treatment of RTT

    The role of DNA methylation in directing the functional organization of the cancer epigenome

    Get PDF
    The holistic role of DNA methylation in the organization of the cancer epigenome is not well understood. Here we perform a comprehensive, high-resolution analysis of chromatin structure to compare the landscapes of HCT116 colon cancer cells and a DNA methylation-deficient derivative. The NOMe-seq accessibility assay unexpectedly revealed symmetrical and transcription-independent nucleosomal phasing across active, poised, and inactive genomic elements. DNA methylation abolished this phasing primarily at enhancers and CpG island (CGI) promoters, with little effect on insulators and non-CGI promoters. Abolishment of DNA methylation led to the context-specific reestablishment of the poised and active states of normal colon cells, which were marked in methylation-deficient cells by distinct H3K27 modifications and the presence of either well-phased nucleosomes or nucleosome-depleted regions, respectively. At higher-order genomic scales, we found that long, H3K9me3-marked domains had lower accessibility, consistent with a more compact chromatin structure. Taken together, our results demonstrate the nuanced and context-dependent role of DNA methylation in the functional, multiscale organization of cancer epigenomes.Charles Heidelberger Memorial Fellowshi

    Global analysis of patterns of gene expression during Drosophila embryogenesis

    Get PDF
    Embryonic expression patterns for 6,003 (44%) of the 13,659 protein-coding genes identified in the Drosophila melanogaster genome were documented, of which 40% show tissue-restricted expression

    Genomic Androgen Receptor-Occupied Regions with Different Functions, Defined by Histone Acetylation, Coregulators and Transcriptional Capacity

    Get PDF
    Background: The androgen receptor (AR) is a steroid-activated transcription factor that binds at specific DNA locations and plays a key role in the etiology of prostate cancer. While numerous studies have identified a clear connection between AR binding and expression of target genes for a limited number of loci, high-throughput elucidation of these sites allows for a deeper understanding of the complexities of this process. Methodology/Principal Findings: We have mapped 189 AR occupied regions (ARORs) and 1,388 histone H3 acetylation (AcH3) loci to a 3 % continuous stretch of human genomic DNA using chromatin immunoprecipitation (ChIP) microarray analysis. Of 62 highly reproducible ARORs, 32 (52%) were also marked by AcH3. While the number of ARORs detected in prostate cancer cells exceeded the number of nearby DHT-responsive genes, the AcH3 mark defined a subclass of ARORs much more highly associated with such genes – 12 % of the genes flanking AcH3+ARORs were DHT-responsive, compared to only 1 % of genes flanking AcH32ARORs. Most ARORs contained enhancer activities as detected in luciferase reporte

    Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura

    Get PDF
    BACKGROUND: The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. RESULTS: We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. CONCLUSIONS: Measuring conservation of sequence features closely linked to function - such as binding-site clustering - makes better use of comparative sequence data than commonly used methods that examine only sequence identity
    • …
    corecore