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Abstract 

Quantifying the functional effects of complex disease risk variants can provide insights into 

mechanisms underlying disease biology. Genome wide association studies have identified 39 

regions associated with risk of epithelial ovarian cancer (EOC). The vast majority of these variants 

lie in the non-coding genome, where they likely function through interaction with gene 

regulatory elements. In this study we first estimated the heritability explained by known common 

low penetrance risk alleles for EOC. The narrow sense heritability (ℎ𝑔
2) of EOC overall and high 

grade serous ovarian cancer (HGSOCs) were estimated to be 5-6%. Partitioned SNP-heritability 

across broad functional categories indicated a significant contribution of regulatory elements to 

EOC heritability. We collated epigenomic profiling data for 77 cell and tissue types from Roadmap 

Epigenomics and ENCODE, and H3K27Ac ChIP-Seq data generated in 26 ovarian cancer and 

precursor related cell and tissue types. We identified significant enrichment of risk SNPs in active 

regulatory elements marked by H3K27Ac in HGSOCs. To further investigate how risk SNPs in 

active regulatory elements influence predisposition to ovarian cancer, we used motifbreakR to 

predict the disruption of transcription factor binding sites. We identified 469 candidate causal 

risk variants in H3K27Ac peaks that are predicted to significantly break TF motifs. The most 

frequently broken motif was REST (P-Value = 0.0028), which has been reported as both a tumor 

suppressor and an oncogene. Overall, these systematic functional annotations with epigenomic 

data improve interpretation of EOC risk variants and shed light on likely cells of origin.  

Keywords: Genome-wide association studies, epithelial ovarian cancer, cells of origin, heritability, 

functional enrichment, epigenomics, motif 
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Introduction 

Epithelial ovarian cancer (EOC [MIM 167000]) describes a diverse group of tumors that are often 

diagnosed at a late stage, have a poor prognosis and develop resistance to standard 

chemotherapeutic treatments 1–3. There are five main histological subtypes of invasive disease: 

High grade serous (HGSOC), low grade serous (LGSOC), mucinous (MOC), endometrioid (EnOC) 

and clear cell (CCOC) ovarian cancer. Ovarian tumors of low malignant potential (LMP) ovarian 

cancer comprise ~20% of cases and only a small minority will progress to invasive disease. The 

histotypes show differences in underlying biology, genetic drivers and to some extent different 

epidemiological and lifestyle risk factors. They may also derive from different cell types, with 

fallopian tube secretory epithelial cells the likely cells of origin for most HGSOCs 4,5, and 

endometriosis the putative precursor of CCOC and EnOC 6–8. Thus, uncovering the underlying 

genetic architecture of different EOC histotypes is an urgent need and may be the most effective 

approach to reduce mortality due to EOC 9.    

Less than forty percent of the estimated heritability of ovarian cancer is explained by known 

coding pathogenic mutations in susceptibility genes including BRCA1 (MIM 113705), BRCA2 (MIM 

600185), BRIP1 (MIM 605882), RAD51C (MIM 602774) and RAD51D (MIM 602954)10. More 

recently, genome wide association studies (GWAS) have identified 39 independent regions 

associated with EOC risk 11. Some regions are associated with specific histotypes, while others 

appear pleiotropic across different EOC histotypes 11–21 or other phenotypes (e.g. breast cancer) 

21,22.  Combined, these risk alleles explain a fraction of narrow sense heritability for ovarian cancer. 

Heritability estimates are complicated by linkage disequilibrium, which often results in the 

identification of tens to hundreds of tightly correlated SNPs at each susceptibility locus 23.   

The vast majority of genetic risk alleles for common complex traits identified by GWAS lie in non-

protein coding DNA regions, with their mechanisms of function largely unknown 24. Previous 

studies for other complex phenotypes have shown that risk variants are enriched in regulatory 

elements, indicating that they function through the differential regulation of gene expression 25–

28. Many regulatory elements can be identified by epigenomic modifications 29–32. Publicly 

available resources such as the Encyclopedia of DNA Elements (ENCODE) and the Roadmap 

Epigenome Mapping Consortium have characterized the epigenomic architecture of a multitude 
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of cell types, showing that the epigenome and transcriptional program are highly tissue-specific 

29,33. Analyses of acetylated lysine 27 of histone H3 protein (H3K27Ac) activity in primary tumors 

shows that >80% of cell type-specific regulatory elements lie in putative enhancers, reinforcing 

previous observations that cell type-specific enhancers drive the spatial and temporal diversity 

of gene expression 29,34.  

We hypothesize that common ovarian cancer risk SNPs are located within tissue specific 

regulatory elements and are likely to function by altering the activity of host enhancers active in 

ovarian cancers and cell types that represent precursors of the different EOC histotypes. We 

applied systematic, computational approaches to identify regulatory elements that are 

potentially disrupted at EOC GWAS risk loci. We first estimated the heritability for each EOC 

histotype using common SNPs, taking into account linkage disequilibrium; and then partitioning 

narrow sense heritability analysis across general broad functional categories. We focused our 

analyses on 39 germline genetic risk loci previously reported GWAS for one or more EOC 

histotypes with the aim of identifying putative regulatory targets and transcription factors 

associated with EOC risk variants and the initiation and early stage EOC development.  
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Methods 

Genotyping datasets for ovarian cancer 

Summary statistics were available from the largest published meta-analysis of 25,509 EOC cases 

and 40,941 controls from Phelan et al. 11. EOC cases comprised the five major histotypes of 

invasive disease - high grade serous (HGSOC; n = 13,037), low grade serous (LGSOC, n = 1,012), 

mucinous (MOC, n = 1,149), endometrioid (EnOC, n = 2,764) and clear cell carcinoma (CCOC, n = 

1,366), additionally borderline serous (n = 1,954) and other uncategorized  EOC (n = 2,749) were 

available. Following Phelan et al.11, we also included the meta-cohort analysis (OCAC+CIMBA), 

combining genotypes from EOC cases and controls in Ovarian Cancer Association Consortium 

(OCAC) and carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of 

BRCA1/2 (CIMBA; 31,448 BRCA1/2 mutation carriers, of which 3,887 mutation carriers have EOC.) 

Summary statistics for genetic associations were generated after imputing genotypes to the 1000 

Genomes Project reference panel of 11,403,952 common variants (MAF >1 %). These summary 

statistics were used for partitioning heritability. We further curated a list of all previously 

reported genome-wide significant risk regions (P-Value<5.0 x 10-8) for EOC (including all 

histotypes) and the credible causal set of SNPs reported at each locus for all invasive ovarian 

cancer and for each histotype where there was evidence of a risk association from prior 

publications 11–21. This identified 39 risk regions for different histotypes at genome wide 

significance (Table S1). Variant position and rsid for each variant were validated in dbSNP146 

with hg19/GRCh37 coordinates.  

Epigenomic and datasets for ovarian cancer and their precursor tissues. 

Publicly available epigenomic profiling datasets were collected from the Roadmap Epigenomics 

Mapping Consortium 34 and the ENCODE project 29 (labelled as ‘ENCODE2012’ in this study, Table 

S2). Additionally, a collection of chromatin immunoprecipitation-sequencing (ChIP-seq) for 

H3K27Ac in ovarian cancer related cell and tissue types that were generated in house was 

compiled. This includes  precursor normal and ovarian cancer cell lines from previously published 

studies and newly generated H3K27Ac ChIP-Seq in additional cell lines and primary tumors (Table 

S3). Briefly, we have generated H3K27Ac-ChIP-seq data for: Twenty primary EOC tumors, five 

each for the different histotypes of invasive ovarian cancer (HGSOC, CCOC, EnOC and MOC) 
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(Table S3); twelve established EOC cell lines that model; undifferentiated EOC (HEYA8), HGSOC 

(CaOV3, UWB1.289, Kuramochi, OVCA429), LGSOC (VOA1056, OAW42), CCOC (JHOC5, ES2 and 

RMG-II) and MOC (GFTR230, MCAS, EFO27); and three ovarian cancer precursor cell types; 

fallopian tube secretory epithelial cells ((FTSECs), FT246, FT33), ovarian surface epithelial cells 

((OSECs), IOSE4 and IOSE11) and endometrioid epithelial cells (EEC16) 35 (Table S3). Methods for 

H3K27Ac-ChIP-seq and peak calling that was previously published have been described 11,29,36–41. 

H3K27Ac ChIP-Seq for six new cell lines (EFO27, VOA1056, HEYA8, Kuramochi, ES2, RMG-II) was 

performed according to previously published methods 42. Peak calling was performed using the 

AQUAS pipeline43. Reads were aligned against the reference human genome hg38. Quality 

control metrics were computed for each individual replicate, including number of reads, 

percentage of duplicated reads, normalized strand coefficient, relative strand correlation and 

fraction of reads in called peaks. Two biological replicates were available for EFO27, VOA1056 

and Kuramochi. Peak calling was performed with macs2 with pooled replicate peaks that overlap 

50% or more of each individual replicate selected for the final peak set. When replicates were 

not available (HEYA8, ES2 and RMG-II) pseudo replicates were formed and pooled peaks selected 

in the same manner from these pseudo replicates. To create consensus peak sets across a single 

histotype for enrichment analyses peaks with least 50% overlap with at least one other peak in 

two or more samples from a histotype group were retained, with the boundaries stretched to 

the edge of each peak in the overlap. Files were then concatenated and peak co-ordinates 

merged  such that if records within the concatenated file were overlapping they were combined 

into a single peak.  

We generated chromatin state calls in Roadmap Epigenomics and ENCODE2012 samples using  

StatepaintR 44 (Table S2). This approach uses human expert rule-based segmentations, which 

allows the user to designate combinations of epigenomic marks to represent functional 

chromatin states. StatepaintR annotates chromatin states based upon available epigenomic 

marks, accommodating for the practical situation that not all histone marks are available for all 

samples. These chromatin state annotations are also released in the StateHub Model Repository 

under TrackHub ID 5813b67f46e0fb06b493ceb0 (see Web Resources). We note that the ‘Active’ 

state delineates regions overlapping with active marks, i.e. H3K27Ac, but when the marks 

required to call the more specific ‘Active Enhancer’ or ‘Active Promoter’ states are not present in 
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inputs.  

Estimation of SNP-heritability 

We estimated the variance explained by known SNP effects, or SNP-heritability, by using linkage 

disequilibrium score regression (LDSC) 45,46, version 1.0.0. LDSC models the expected 𝜒2 statistics 

from a GWAS of SNP 𝑗 as 

𝐸[𝜒𝑗
2] =  

𝑁ℎ𝑔
2

𝑀
𝑙𝑗 + 𝑁𝑎 + 1 

, where 𝑁 is the number of individuals; 𝑀 is the number of SNPs, such that 
ℎ𝑔

2

𝑀
 is the average 

heritability explained per SNP; 𝑎 is a constant measuring the contribution of confounding biases, 

such as cryptic relatedness and population stratification; 𝑙𝑗 is the LD score of SNP 𝑗 defined as 

𝑙𝑗 =  ∑ 𝑟𝑗𝑘
2

𝑘 , where 𝑟𝑗𝑘
2  is the Pearson correlation between SNP 𝑗 and SNP 𝑘 , and 𝑘 denotes other 

SNPs within the LD region. The LD scores were pre-calculated from phased European-ancestry 

individuals from the 1000 Genomes Project reference panel v3 45. 

Partitioning SNP-heritability into functional categories 

To examine the importance of specific functional categories in SNP-heritability, we applied 

stratified LD score regression 46 to EOC and HGSOC GWAS summary statistics 11. The goal was to 

partition SNP-heritability into functional categories by combining SNPs in the same LD region 

together and quantify their overlaps with regions of interest. The stratified LDSC model was 

adapted from the above-mentioned regular LDSC model: 

𝐸[𝜒𝑗
2] =  𝑁 ∑ 𝜏𝐶

𝐶

𝑙(𝑗, 𝐶) + 𝑁𝑎 + 1 

, where 𝐶  represents the functional categories; 𝜏𝐶  denotes the per-SNP contribution to 

heritability of category 𝐶 ; 𝑙(𝑗, 𝐶) is the LD score of SNP 𝑗  falling in category 𝐶 , calculated as 

𝑙(𝑗, 𝐶)  =  ∑ 𝑟𝑗𝑘
2

𝑘∈𝐶  ; all the other parameters are the same as in LDSC. The category-specific 

enrichment was defined as the proportion of SNP-heritability in the category divided by the 

proportion of SNPs in the same category.  

The partitioned-heritability analyses were performed with two different sets of functional 

categories. The first is a full baseline model with 24 general broad functional annotations from 
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public datasets, which were inclusive of all publicly available cell types and post-processed in 

Gusev et al. 47. The 24 annotations include coding, 3’UTR, 5’UTR, promoter, and intron regions 

from UCSC Genome Browser 47,48; regions conserved in mammals 49,50; combined chromHMM 

and Segway predictions comprising CTCF-bound regions, promoter-flanking, transcribed, 

transcription start site (TSS), strong enhancer, weak enhancer, repressed annotations 51; digital 

genomic footprint (DGF) and transcription factor binding sites (TFBS) from ENCODE 47; open 

chromatin regions as reflected by DNase I hypersensitivity sites (DHSs) from a union of all cell 

types and a union of only fetal cell types on ENCODE and Roadmap Epigenomics 52; FANTOM5 

enhancer 53; H3K27Ac 54,55, H3K4me1 29, and H3K4me3 29 histone marks from a union over cell 

types on Roadmap Epigenomics;  super-enhancers obtained from 55. 

The second set contains 15 cell-type-specific annotations for H3K27Ac marks, which represent 

precursor normal and ovarian cancer cell lines (see the ‘Epigenomic profiling’ section for details). 

We added these cell-type-specific annotations individually to the full baseline model, which 

resulted in 15 models for EOC and 15 models for HGSOC. This cell-type-specific analysis helped 

measure how much more the annotation contributes on top of the rest of the full baseline model, 

and to justify which cell type is more enriched than the others.  

Enrichment of credible causal SNPs in biofeatures 

EOC credible causal risk variants were combined to create the full credible set (n=1432), and then 

split to represent sets of risk variants associated with each EOC histotype. The background set of 

variants used in functional annotation and enrichment analysis were generated by aggregating 

SNPs within 2Mb (1Mb +/-) of the credible causal set, in an attempt to maintain similar genetic 

architecture (e.g. linkage disequilibrium, regulatory activity and transcriptional program) as 

credible causal risk variants.  Functional annotation of credible causal SNPs was performed with 

SNPnexus 56 using SIFT 57 and Polyphen 58 for protein effect, ENCODE 29, Roadmap Epigenomics 

34, and Ensembl Regulatory Build 59 for regulatory elements, and CADD 60, DeepSEA 61 and 

FunSeq2 62 for non-coding variation scoring. The difference between the average FunSeq2 

functional score for the foreground and background SNP lists was determined with a two tailed 

t test. 

Enrichment analysis was performed with the FunciVar package (see Web Resources), a tool for 
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annotation and functional enrichment of variant sets. In principle, FunciVar first takes two lists 

of variants as inputs: 1) a list of target variants, in this analysis the credible causal set of risk SNPs, 

which act as the foreground, and 2) a list of control variants, which act as the background. The 

background SNP lists from each locus were combined as necessary to ensure the local 

background set of variants for each locus was included in the histotype-specific enrichment. 

FunciVar then intersects each variant with biofeatures, which were provided as bed files. The 

likelihood of true enrichment for each variant list is modeled under the beta-binomial distribution.  

𝜃𝑓𝑔~Beta(𝑆𝑓𝑔 +  𝛼, 𝑁𝑓𝑔 +  𝛽) 

    

𝜃𝑏𝑔~Beta(𝑆𝑏𝑔 +  𝛼, 𝑁𝑏𝑔 +  𝛽) 

, where 𝑆 is the number of observed overlaps with biofeature, 𝑁 is the number of total variants, 

and subscripts 𝑏𝑔  and 𝑓𝑔  denote background and foreground respectively. FunciVar uses an 

uninformative Jeffreys prior, which set 𝛼 = 0.5 and 𝛽 = 0.5. To estimate the true enrichment, 

FunciVar by default simulates 10,000 times to obtain a distribution of foreground enrichment 

probability, 𝜃𝑓𝑔 , and a distribution of background enrichment probability, 𝜃𝑏𝑔. The two sets of 

simulated probabilities were next directly subtracted to obtain a distribution of differences.  

FunciVar calculates a 95% credible interval for the range of enrichment probability differences 

between the two lists of variants. Enrichment is reported as the median of this credible interval, 

within the range of -1 to 1, where 1 means strong enrichment and -1 means strong depletion. 

The significance of results is reported as probability that foreground SNPs have more overlaps 

with the biofeature than background SNPs, within the range of 0 to 1, the higher the more 

confident. Results are plotted with significantly enriched biofeatures shown in color, and non-

significantly enriched biofeatures shown in grey. 

Identifying transcription factor binding consequences of EOC credible causal variants in 

enhancers 

To identify the potential consequences of EOC risk variants in EOC enhancers we used 

MotifBreakR 63 to predict the transcription factor binding sites that a variant disrupts and the 

extent of disruptiveness. MotifBreakR uses a position weight matrix to score the difference of 

binding between reference and alternative alleles for every possible window that includes the 
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variant, and then categorizes the normalized difference score as effect of the target variant 

(strong, weak, or neutral).  We used seven TFBS motif databases; ENCODE motifs 64, Factorbook 

65, Hocomoco 66, Homer 67, Transfac 68, Jaspar 69 and MotifDb 70.  

To identify significant TFs that were predicted to be impacted by the alternate allele at credible 

causal variants, we applied FunciVar package again. We curated two lists: 1) the foreground list, 

which are credible causal variants that intersect H3K27Ac peaks in any EOC cell type, and 2) the 

background list; credible causal variants that did not intersect H3K27Ac peaks in any EOC cell 

type. Significant differences in likelihood of the alternate allele of a credible causal variant 

disrupting a TFBS are reported for each TF.   
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Results 

Regulatory elements significantly account for ovarian cancer heritability 

The aim was to evaluate the functional significance of common, genetic variants associated with 

epithelial ovarian cancer (EOC) risk identified by GWAS, and the contribution of different 

functional states to EOC heritability. We utilized genotype data pooled from multiple GWAS 

comprising 25,509 EOC cases and 40,941 controls stratified into five major histotypes of invasive 

or low grade/ borderline disease: High grade serous (HGSOC), low grade serous (LGSOC), 

mucinous (MOC) endometrioid (EnOC) and clear cell (CCOC) ovarian cancers (see Methods) 11. 

We estimated the variance explained by known SNP effects, or SNP-heritability, using linkage 

disequilibrium score regression (LDSC) 45,46. LDSC measures narrow sense heritability ( 𝒉𝒈
𝟐 , ‘SNP-

heritability’ henceforth) using GWAS summary statistics to explicitly model linkage 

disequilibrium. Estimates of SNP-heritability ranged from nearly 0 - 6% for the different EOC 

histotypes (Figure 1). We identified 5.1% heritability in our analyses for the All EOC GWAS, in 

keeping with a prior report of heritability performed with the same publicly available summary 

statistics for All EOC71.  The highest heritability identified was explained by risk variants associated 

with the HGSOC histotype and the lowest heritability for risk variants associated with LGSOC. 

Next, we partitioned SNP-heritability across 24 broad non-cell-type-specific ‘functional’ 

categories (see Methods) 72 in two analyses; EOC and HGSOC, as these groups were suitably 

powered for further analysis based on their observed heritability z-score. We observed a 

significant contribution of four functional categories (represented by five biofeatures) to the 

heritability of EOC, and two functional categories to the heritability of HGSOC (Table 1). The most 

significant enrichment was in regions of the genome marked by H3K27Ac (P-Value = 0.01 – 0.03). 

Up to 27% of the 1,432 candidate causal risk variants coincided with the histone modification 

H3K27Ac, accounting for as much as 97% of the estimated SNP-heritability for EOC (3.6-fold 

enrichment, P-Value = 0.006). Other significant functional elements included 3 prime 

untranslated regions (3’UTR) (17.3-fold enrichment, P-Value = 0.015); promoters (8.7-fold 

enrichment, P-Value = 0.016); and super-enhancers (2.1-fold enrichment, P-Value = 0.02) (Table 

1). HGSOC heritability was most significantly enriched  in 3’UTRs (18.4-fold enrichment, P-Value 

= 0.009) and H3K27Ac marks (1.8-fold enrichment, P-Value = 0.033).     
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Table 1. Enrichment estimates for 24 non-cell-type-specific functional categories for EOC and 
HGSOC. Enrichment was calculated as Pr(ℎ𝑔

2)/Pr(SNPs), which shows the proportion of estimated 

SNP-heritability explained by the proportion of SNPs in the functional category.  Statistically 
significant associations (P-Values < 0.05) are marked in bold. 

Functional Category All EOC HGSOC 

Enrichment P-Value Enrichment P-Value 

3’UTR 17.29 0.02 18.40 0.01 
5’UTR -0.62 0.89 5.12 0.71 
Coding  3.55 0.75 8.05 0.30 
Conserved 24.94 0.06 21.82 0.07 
CTCF -9.62 0.11 -3.86 0.47 
DGF 1.71 0.82 -0.92 0.52 
DHS 3.42 0.35 0.50 0.83 
Enhancer 2.66 0.69 2.56 0.71 
FANTOM5 enhancer -2.46 0.86 12.42 0.51 
Fetal DHS 0.41 0.87 -1.52 0.50 
H3K27Ac (Hnisz et al.) 1.96 0.01 1.77 0.03 
H3K27Ac (PGC2) 3.61 0.01 2.42 0.16 
H3Kme1 2.02 0.16 1.82 0.28 
H3Kme3 3.91 0.07 1.01 0.99 
H3K9ac 3.25 0.33 0.90 0.96 
Intron 1.46 0.12 1.24 0.35 
Promoter 8.69 0.02 6.99 0.06 
Promoter flanking 10.38 0.49 -2.90 0.76 
Repressed -0.32 0.07 0.67 0.64 
Superenhancer 2.09 0.02 1.83 0.12 
Transcription factor binding site 4.93 0.16 2.21 0.66 
Transcribed 1.87 0.24 1.05 0.95 
TSS 5.28 0.55 0.56 0.96 
Weak enhancer 9.06 0.35 4.69 0.68 

 

Enrichment of EOC risk variants with different chromatin states by cell type 

We collated a set of 1,423 credible causal SNPs, previously reported from 39 confirmed genome-

wide significant risk regions (P-Value<5.0 x 10-8) for all EOC histotypes (Table S1). We annotated 

the full credible set of EOC risk SNPs with SNPnexus 73 to map each variant to intergenic, intronic, 

3’ or 5’ UTR or exonic regions (Figure S1a). The 1,432 credible causal risk variants were integrated 

with epigenomic data to evaluate enrichment of EOC risk variants in different chromatin states 

by cell type. The majority of credible causal SNPs (96%) fall into non-protein coding DNA regions; 

71% of SNPs lie in intergenic regions; and 25% of SNPs lie in intronic regions. We obtained a 
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functional impact score for each variant through FunSeq2 scoring algorithms 62. The average 

functional impact score of EOC risk variants was 0.404, which is significantly higher than regional, 

matched background SNPs (0.2404; P-Value = 2.02x10-49; Figure S1b).  

We performed enrichment analyses to test whether EOC risk SNPs are enriched within specific 

classes of biofeatures. We used StatePaintR 44 to combine epigenomic marks into chromatin state 

calls that represent functional elements, including active, poised, silenced, and weak states of 

enhancers and promoters. We first evaluated enrichment of EOC risk SNPs with chromatin states 

from Roadmap Epigenomics and ENCODE for publicly available tissues 29,34. Enrichment tests 

were performed using FunciVar (see Methods). Overall, we observed the greatest enrichment of 

EOC risk SNPs in active regulatory regions in digestive, immune, epithelial, liver, thymus, smooth 

muscle and stem cell types and each of the cancer-associated ENCODE2012 cell lines, which are 

all closely related cell types (Figure 2, Table S4). In contrast, we observed a depletion of EOC risk 

SNPs in heterochromatin in 68 cell types, and an enrichment in polycomb repressed silenced 

regions in 48 cell types. Overall these analyses indicate that the enrichment of EOC risk SNPs in 

active regulatory regions is typically more cell-type restricted than in silenced regions. 

We observed the strongest enrichment in an active regulatory chromatin state in stimulated 

primary T helper cells (E041) and primary T helper memory cells (E037), where 165 and 128 of 

1432 EOC risk SNPs respectively overlapped active regions (Figure 2, Table S5). There was also 

enrichment in active regulatory regions in all digestive tissue types (sigmoid colon, rectal mucosa, 

small intestine and stomach). By contrast, we found no evidence of enrichment for EOC risk SNPs 

in active regulatory regions in brain, heart or lung tissues, but instead observed enrichment for 

silenced regions in these tissue types.  

Enrichment of EOC risk variants in regions marked by H3K27Ac peaks in ovarian and non-

ovarian cancer tissues 

Given the tissue-specific patterns of enrichment in active regulatory states, we restricted these 

analyses to regions only marked by H3K27Ac, the most widely profiled marks in Roadmap 

Epigenomics and ENCODE tissues. We also included in these analyses data we have generated 

through H3K27Ac-ChIP-seq profiling of primary tissues or cell lines for 26 ovarian cancers 

representing the different histotypes of invasive disease, and 6 normal cell lines representing 



 

14 

putative cells of origin of the different ovarian cancer histotypes (see Methods) (Table S3). 

We observed enrichment of EOC risk SNPs in H3K27Ac peaks in 38 of the 98 cell types from in 

Roadmap Epigenomics/ENCODE, and depletion in only 10 cell types (Track 1 of Figure 3 and 

Tables S6,S7). EOC risk SNPs were most enriched in H3K27Ac in blood and T-cell tissues and were 

significantly depleted in all seven brain cell types. After stratifying EOC risk SNPs by histological 

subtype, we found the strongest enrichment for risk variants at the 17q12 risk locus for the CCOC 

histotype; all 8 candidate causal SNPs at this locus lie in intronic regions of the HNF1B gene 

(hepatocyte nuclear factor 1 homeobox B [MIM 189907]) (Figure 3 and Table S6), with the 

greatest enrichment in digestive (E106, E102, E101, E092, E085, E084) and liver (E080) tissues.  

We next performed the same analysis for H3K27Ac marks profiled in 38 ovarian cancer related 

tissues, including ovarian tumors for different histotypes, normal ovarian cancer precursor cell 

types and data from profiling of whole ovary specimens 55. We also compared these data to 

enrichment for other tissue types from Roadmap Epigenomics/ENCODE which may indicate other 

tissues of origin for ovarian cancers. We included the sigmoid colon as a potential cell type of 

origin for MOC, which currently has an undetermined origin 74 but shows histological features 

similar to the gastrointestinal tract. The colorectal cancer cell line HCT116 was included as an 

additional model of cancers that arise from the gastrointestinal tract. The cervical cancer cell line 

HeLaS3  was included as a model of carcinoma of the cervix, which is a candidate cell type of 

origin for CCOC, and there are currently no suitable cell lines available to model normal cervix 

74,75.  We observed enrichment of EOC risk SNPs across all ovarian tissues except for whole ovary. 

The strongest enrichment was observed in H3K27Ac peaks in primary HGSOCs in which 197/1432 

SNPs (13.75%) overlapped H3K27Ac peaks, compared to 5.6% of the background (control SNPs) 

(P-Value < 0.001) (Figure 4a, Tables S8 and S9). In parallel, we also estimated enrichment of 

heritability in these H3K27Ac marks based on common SNPs with similar findings (Figure S3 and 

Supplementary Materials, ‘Enrichment of common SNPs in ovarian cancer related H3K27Ac peaks 

based on partitioned heritability’ paragraph). 

We repeated these analyses after stratifying the panel of candidate causal EOC risk SNPs by 

histotype. In total there were 315 candidate causal risk SNPs specific to HGSOC, 353 SNPs specific 

to LGSOC, 8 SNPs specific to CCOC, 8 SNPs specific to EnOC, 296 SNPs specific to MOC and 47 

SNPs specific to LMP histotypes. Risk SNPs for HGSOC were most significantly enriched in 
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H3K27Ac marks in primary HGSOC tumors; 31/315 (9.8%) risk variants for HGSOC intersect 

H3K27Ac marks in primary HGSOCs, compared to local background SNPs (difference=0.045, P-

Value=0.001; Figure 4b). We observed little or no enrichment for HGSOC risk SNPs in H3K27Ac 

marks generated in HGSOC cell lines, nor in normal FTSECs which are the reported precursors of 

HGSOC (Figure 4b).  HGSOC risk SNPs were also significantly depleted in normal ovarian surface 

epithelial cells (OSECs). We also observed significant enrichment of risk variants associated with 

the LMP histotype in H3K27Ac marks in OSECs (Tables S10 and S11; Figure S2), but no tissue 

specific enrichments for risk SNPs for other histotypes, which could largely be due to the lack of 

statistical power to detect enrichment. 

In silico analysis of EOC risk SNPs intersecting transcription factor binding site (TFBS) motifs  

We evaluated the putative effects of the 590 EOC risk SNPs intersecting H3K27Ac marks on 

binding to TFBS motifs using the statistical tool, motifbreakR 63. The 590 EOC risk SNPs were 

selected by intersecting with at least one H3K27Ac peak in any of the precursor normal or ovarian 

cancer cell lines or tumors.  469 out of 590 SNPs were predicted to significantly disrupt at least 

one TFBS (P-Value < 1x10-5; Table S12), compared to a background SNP set which was drawn from 

credible causal SNPs that did not intersect any EOC-related H3K27Ac marks. Eighty-two SNPs 

were predicted to break a single TFBS; the remaining SNPs break two or more (on average four) 

motifs with 5 SNPs predicted to break more than 20 motifs (Figure 5a). At the 18q11.2 locus, 

which confers risk of HGSOC, rs9955681 located in an intron of the LAMA3 gene (MIM 600805), 

was predicted to break 67 different motifs; and at the 4q26 EOC locus, rs7671665, which is 

located in intron 2 of the SYNPO2 gene was predicted to break 31 different motifs (Table S12, 

Figure 5a). We analyzed eQTL association from in The Cancer Genome Atlas (TCGA) eQTL 

databases for HGSOC and breast cancer, and GTEx normal ovary dataset (Table S12). Ninety-nine 

out of 490 SNPs were reported as eQTLs in at least one of the datasets implicating 18 genes at 8 

EOC loci as candidate susceptibility genes. Of these 99 SNPs, 32 (32%) are associated with PAX8 

(MIM 167415) and/or a PAX8-antisence transcript LOC654433, which is a well-established 

transcription factor overexpressed in ovarian cancer 40,41,76,77. 

The most frequently disrupted TFBS motifs were for REST (repressor element-1 silencing 

transcription factor [MIM 600571]) disrupted by 19 SNPs across 12 loci (P-Value = 0.0028); TCF3 
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(Transcription factor 3 [MIM 147141]) disrupted by 11 SNPs (P-Value = 0.0075); ID4 (DNA-binding 

protein inhibitor [MIM 600581]), which was disrupted by 8 SNPs (P-Value = 0.0025); and EHF 

(epithelial-specific transcription factor [MIM 605439]) broken by 6 SNPs(P-Value=0.0001) (Figure 

5b and Table S13). The 6 SNPs disrupting EHF binding locate at five EOC risk loci associated serous 

and mucinous histotypes (1p36, 2q13, 2q31, 8q24, 19p13).  
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Discussion 

Identifying the functional effects of common susceptibility variants identified by GWAS on is an 

important step in delineating the biological mechanisms underlying disease and in understanding 

the earliest stages of disease pathogenesis. In this study, we examined the heritability for risk 

variants associated across ovarian cancer and for each of the different histotypes of disease. 

Moreover, we partitioned heritability into broad functional categories to identify the functional 

drivers of neoplastic initiation and progression. Partitioning heritability has enabled a powerful 

integration of GWAS findings and functional annotation of risk associated variants, but its utility 

is often restricted to datasets with a large sample size to enable a calculation of SNP-heritability 

with sufficient confidence. In this study, our analyses were limited to all invasive EOC and HGSOC 

cases where samples sizes were large enough. Samples sizes were relatively small for other, rarer 

EOC histotypes such that there was insufficient statistical power to perform SNP-heritability 

analyses. We might expect the heritability estimates, and the functional elements that this 

heritability partitions to, to improve as GWAS are performed in increasingly large sample sizes 

for these and other histotypes.  

We identified enrichment of EOC credible causal SNPs into active regulatory elements marked by 

H3K27Ac in ENCODE and Roadmap Epigenomics public datasets. This indicated germline risk 

variants that contribute to disease biology via disruption of enhancer activity in cell and tissue 

specific active regulatory regions, rather than regulatory elements that are active across a broad 

range of cell types. We further identified strong enrichment of the full credible causal variant list 

in 14 of the 15 EOC relevant cell types included. We observed clear patterns of enrichment of 

HGSOC germline risk SNPs in HGSOC tumors, and depletion of these variants in H3K27Ac from 

precursor normal cells. These findings suggest that HGSOC germline risk variants affect cancer 

progression or development rather than initiation and underscore the need for variant 

annotation using cell types relevant to disease. It has been recognized that human primary tissue 

specimens serve as better representation of tumors than immortalized normal and cancer cell 

lines. Our lack of enrichment of risk variants in cell lines may be due in part to the lack of 

suitability of these models in evaluating the role of germline risk variants in tumor development. 

The significant enrichment for HGSOC credible causal SNPs in primary HGSOCs (n=5) likely 

represents an underestimate of the true enrichment dues to the small numbers of tumors; we 
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anticipate a stronger signal if we use larger numbers of tumors in these analyses. 

The cells of origin for the different histotypes of ovarian cancers are not precisely known. 

Fallopian tube epithelial cells are the most like precursors of HGSOCs and CCOC and EnOC are 

suspected to arise from endometriosis 4–8. Our comprehensive H3K27Ac ChIP-seq data in ovarian 

and non-ovarian cancer tissues makes it possible to identify the putative cells of origin of disease. 

The significant depletion of HGSOC credible causal variants we observed in H3K27Ac from OSECs 

active regions (Figure 4b) is consistent with an emerging consensus that HGSOC is less likely to 

arise from ovarian surface epithelial cells 4,5,78. The significant enrichment of LMP risk variants in 

OSECs active regions supports a role for this cell type in this histotype (Table S10 and Figure S2) 

79,80. It has been hypothesized, with supporting data from pathology examination 80, that ovarian 

surface epithelium invaginates into the underlying stroma of the ovary to form inclusion cysts 

that undergo transformation to become malignant 80. LMP and LGSOC are likely to arise from 

transformed OSECs trapped within inclusion cysts 79 and the significant enrichment of six SNPs at 

two LMP rick loci (4q32.2 and 5p15) in OSECs (Table S11) supports an OSEC origin for these tumor 

types.  

CCOCs are strongly associated with endometriosis, and may derive from ciliated epithelial cells 

in ovarian endometriosis lesions 81,82. Only one locus has been confirmed to be associated with 

CCOC risk (the HNF1B 17q12 locus) which makes it challenging to investigate the likely cells of 

origin in the current study. This locus is pleiotropic for both HGSOC and CCOC, but we only 

observed significant enrichment in H3K27Ac marks for CCOC and MOC tumors and cell lines 

(Figure S4a). Here all 8 candidate causal SNPs at 17q12 lie in intronic regions of the HNF1B gene. 

HNF1B has been reported as a susceptibility gene and is highly expressed in CCOCs but largely 

absent in HGSOCs 7,83. We further investigated gene expression of HNF1B across our previously 

generated ovarian cancer tumor RNA-seq data41. We found HNF1B is expressed in MOC, EnOC, 

and CCOC, but not in HGSOC (Figure S4b), which is consistent with the difference in H3K27Ac 

enrichment between histotypes.  

We present here an approach to annotate risk SNPs that may influence transcriptional regulation 

by interacting with the epigenomic landscape to disrupt TF binding and alter gene regulation and 

expression.  Functional validation would be the most convincing approach to confirm our in silico 
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predictions of TFBS disrupted by risk variants within active regulatory regions. This would likely 

require genome editing assays to be developed in human cell line models to create isogenic cell 

lines for each SNP and to test their effects on binding of the relevant TFs, but this is beyond the 

scope of the current study. As an alternative, we have evaluated the evidence for these candidate 

TFs and risk variants through literature based evidence searches and by confirming that several 

of the predicted impacted variants are expression QTLs in HGSOCs and breast cancer samples 

from TCGA, or in normal ovarian tissues profiled by GTEx (Table S12). For example, SNPs 

rs7671665 and rs9955681 were predicted to break the greatest number of motifs. We identified 

SNP rs7671665 that breaks 31 motifs within a regulatory element present in a wide range of 

Roadmap Epigenomics and ENCODE cell types and most of our panel of EOC related cell types. 

This SNP is an eQTL located within intron 2 of SYNPO2, and is reported to loop to the promoter 

of SYNPO2 84 and METTL14 (MIM 616504)85, a component of N6-methyladenosine (m6A) 

methyltransferase complex. This complex controls post translational modification of m6A RNA 

and has been implicated in cancer, cell differentiation and proliferation in development pathways 

86. Interestingly, m6A is reported to be enriched in the 3’UTR 87, which was the most significantly 

enriched biofeature in our partitioning of heritability analysis. Another example is SNP rs9955681, 

which is predicted to break 67 TF motifs in EOC tumors active regions. This SNP is located in an 

intron of LAMA3, a known enhancer in breast and cervical cancer cell lines and gastrointestinal 

tissues 29,33. This SNP is also a known eQTL in previous HGSOC susceptibility gene analyses 88. 

Our own study and other previous studies have identified a convergence of EOC risk variants on 

the PAX8 cistrome, with an enrichment of risk variants for serous ovarian cancer at PAX8 target 

genes 77. This is similar to findings for non-coding somatic variation in ovarian tumors, which are 

also enriched for PAX8 transcription factor binding sites and PAX8 targets 89. Identifying an 

increased burden of risk variants in TFBS motifs across the genome has the potential to uncover 

previously unknown biology, and may explain how many risk variants across many loci act 

together to impact disease. We identified three TFs with motifs across the genome that were 

strongly enriched for risk variants. The results were supported by the published literatures: REST 

and ID4 both of which appear to have dual roles as oncogenic and antioncogenic neoplastic 

drivers 90,91. ID4 is associated with endometriosis risk and overexpressed in EOC tumors but not 
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in normal tissues92–94. EHF is also overexpressed in EOC tumors and induces apoptosis and impairs 

cell adhesion and invasion after knockdown in EOC cell lines95. 

In conclusion, we have applied enrichment approaches to identify overrepresentations of risk 

SNPs within specific biofeatures. By intersecting risk SNPs with a catalogue of regulatory 

elements, we identify putative enhancers impacted by risk variants that help explain the 

underlying functional mechanisms mediating genetic risk as ovarian cancer susceptibility loci. In 

additional we have shown the power of these approaches to elucidate the putative cells of origin 

of the different ovarian cancer histotypes, providing support for previously known cell types, and 

identifying other cell types associated with other histotypes. Finally, these studies have defined 

sets of putative causal variants at ovarian cancer risk loci, that warrant further functional analyses 

to identify the genetic and regulatory mechanisms that drive initiation and early stage 

development of ovarian cancers.  
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Figure 1. Estimates of SNP-heritability ( 𝒉𝒈
𝟐    epllaiee  by oommoe SNPs. Overall SNP heritability 

calculated based on GWAS summary statistics for each EOC histotype. The GWAS included 40,941 
controls, and the number of cases by histotype are shown in parentheses. EOC: Epithelial ovarian cancer; 
HGSOC: high grade serous ovarian cancer; MOC: mucinous ovarian cancer; EnOC: endometrioid ovarian 
cancer; CCOC: clear cell ovarian cancer; LGSOC: low grade serous ovarian cancer; LMP: low malignant 
potential 
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Figure 2. EOC risk variaets are eeriohe  ie aotive regulatory elemeets. Enrichment analyses 
were performed in different chromatin states in REMC and ENCODE tissues and cell lines. 
Enriched biofeatures are shown in red, depleted biofeatures in blue, and non-significantly 
enriched biofeatures in white. The size of the circle indicates the probability of enrichment, 
circles outlined met significance. 
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OCAC/CIMBA 

Credible Set 

HGSOC 

MOC 

CCOC 

ENOC 

Pleiotropic 

LGSOC 

Figure 3. Histotyle sleoifio ore ible oausal variaets show  iffereet latteres of eeriohmeet. 
Enrichment analyses were performed for each EOC histotype in active regulatory regions marked 
by H3K27Ac in Roadmap Epigenomics and ENCODE tissues and cell lines. Enriched biofeatures 
are shown in red, depleted biofeatures in blue, and non-significantly enriched biofeatures in 
white. The size of the circle indicates the probability of enrichment, circles outlined met 
significance. 
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Figure 4. Eeriohmeet of EOC risk variaets ie ovariae oaeoer assooiate  tissues ae  oell liees. 
(a) EOC credible causal SNPs are significantly enriched in precursor (dark colors) and cell line 
models of EOC, and primary EOC tumors (light colors). (b) Credible causal SNPs associated with 
HGSOC are enriched in active regulatory regions in primary HGSOCs (*) and significantly 
depleted in ovarian surface epithelial cells (OSEC consensus peaks) (**) 
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Figure 5. EOC risk SNPs  isrult TF motifs at risk looi. (a) Number of motifs disrupted by 
credible causal SNPs intersecting EOC-related H3K27Ac peaks. (b) Number of times motif is 
broken by credible causal SNPs that overlap EOC-related H3K27Ac peaks. (c) REST motif logo 
from motifbreakR. 

Fr
eq

u
en

cy
 

TCF3 

MEIS2 
NRF1 
NHLH1 
ZEB1 

Number of times motif is broken 

IDF4 REST 


