143 research outputs found

    Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon)

    Full text link
    The dynamics of prominence fine structures is a challenge to understand the formation of cool plasma prominence embedded in the hot corona. Recent observations from the high resolution Hinode/SOT telescope allow us to compute velocities perpendicularly to the line-of-sight or transverse velocities. Combining simultaneous observations obtained in H-alpha with Hinode/SOT and the MSDP spectrograph operating in the Meudon solar tower we derive the velocity vectors of a quiescent prominence. The velocities perpendicular to the line-of-sight are measured by time slice technique, the Dopplershifts by the bisector method. The Dopplershifts of bright threads derived from the MSDP reach 15 km/s at the edges of the prominence and are between +/- 5 km/s in the center of the prominence. Even though they are minimum values due to seeing effect, they are of the same order as the transverse velocities. These measurements are very important because they suggest that the verticalstructures shown in SOT may not be real vertical magnetic structures in the sky plane. The vertical structures could be a pile up of dips in more or less horizontal magnetic field lines in a 3D perspective, as it was proposed by many MHD modelers. In our analysis we also calibrate the Hinode H-alpha data using MSDP observations obtained simultaneously.Comment: 7 pages, 7 figures, submitted to A &

    A Search for High-Frequency Coronal Brightness Variations in the 21 August 2017 Total Solar Eclipse

    Get PDF
    We report on a search for short-period intensity variations in the green-line FeXIV 530.3 nm emission from the solar corona during the 21 August 2017 total eclipse viewed from Idaho in the United States. Our experiment was performed with a much more sensitive detection system, and with better spatial resolution, than on previous occasions (1999 and 2001 eclipses), allowing fine details of quiet coronal loops and an active-region loop system to be seen. A guided 200-mm-aperture Schmidt-Cassegrain telescope was used with a state-of-the-art CCD camera having 16-bit intensity discrimination and a field-of-view 0.43 degree x 0.43 degree that encompassed approximately one third of the visible corona. The camera pixel size was 1.55 arcseconds, while the seeing during the eclipse enabled features of approx. 2 arcseconds (1450 km on the Sun) to be resolved. A total of 429 images were recorded during a 122.9 second portion of the totality at a frame rate of 3.49 images per second. In the analysis, we searched particularly for short-period intensity oscillations and travelling waves, since theory predicts fast-mode magneto-hydrodynamic (MHD) waves with short periods may be important in quiet coronal and active-region heating. Allowing first for various instrumental and photometric effects, we used a wavelet technique to search for periodicities in some 404 000 pixels in the frequency range 0.5-1.6 Hz (periods: 2 second to 0.6 second). We also searched for travelling waves along some 65 coronal structures. However, we found no statistically significant evidence in either. This negative result considerably refines the limit that we obtained from our previous analyses, and it indicates that future searches for short-period coronal waves may be better directed towards Doppler shifts as well as intensity oscillations

    The Influence of Solar Flares on the Lower Solar Atmosphere: Evidence from the Na D Absorption Line Measured by GOLF/SOHO

    Full text link
    Solar flares presumably have an impact on the deepest layers of the solar atmosphere and yet the observational evidence for such an impact is scarce. Using ten years of measurements of the Na D1_{1} and Na D2_2 Fraunhofer lines, measured by GOLF onboard SOHO, we show that this photospheric line is indeed affected by flares. The effect of individual flares is hidden by solar oscillations, but a statistical analysis based on conditional averaging reveals a clear signature. Although GOLF can only probe one single wavelength at a time, we show that both wings of the Na line can nevertheless be compared. The varying line asymmetry can be interpreted as an upward plasma motion from the lower solar atmosphere during the peak of the flare, followed by a downward motion.Comment: 13 pages, 7 figure

    Magnetic Field Structures in a Facular Region Observed by THEMIS and Hinode

    Full text link
    The main objective of this paper is to build and compare vector magnetic maps obtained by two spectral polarimeters, i.e. THEMIS/MTR and Hinode SOT/SP, using two inversion codes (UNNOFIT and MELANIE) based on the Milne-Eddington solar atmosphere model. To this end, we used observations of a facular region within active region NOAA 10996 on 23 May 2008, and found consistent results concerning the field strength, azimuth and inclination distributions. Because SOT/SP is free from the seeing effect and has better spatial resolution, we were able to resolve small magnetic polarities with sizes of 1" to 2", and we could detect strong horizontal magnetic fields, which converge or diverge in negative or positive facular polarities. These findings support models which suggest the existence of small vertical flux tube bundles in faculae. A new method is proposed to get the relative formation heights of the multi-lines observed by MTR assuming the validity of a flux tube model for the faculae. We found that the Fe 1 6302.5 \AA line forms at a greater atmospheric height than the Fe 1 5250.2 \AA line.Comment: 20 pages, 9 figures, 3 tables, accepted for publication in Solar Physic

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    First light observations of the solar wind in the outer corona with the Metis coronagraph

    Get PDF
    In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H?» I Lyman-α corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first HI Lyman-α images of the extended corona and the first instantaneous map of the speed of the coronal plasma outflows during the minimum of solar activity and allow us to identify the layer where the slow wind flow is observed. The polarized visible light (580-640 nm) and the ultraviolet HI Lyα (121.6 nm) coronal emissions, obtained with the two Metis channels, were combined in order to measure the dimming of the UV emission relative to a static corona. This effect is caused by the outward motion of the coronal plasma along the direction of incidence of the chromospheric photons on the coronal neutral hydrogen. The plasma outflow velocity was then derived as a function of the measured Doppler dimming. The static corona UV emission was simulated on the basis of the plasma electron density inferred from the polarized visible light. This study leads to the identification, in the velocity maps of the solar corona, of the high-density layer about ±10° wide, centered on the extension of a quiet equatorial streamer present at the east limb - the coronal origin of the heliospheric current sheet - where the slowest wind flows at about 160 ± 18 km s-1 from 4 R⊙ to 6 R⊙. Beyond the boundaries of the high-density layer, the wind velocity rapidly increases, marking the transition between slow and fast wind in the corona
    corecore