2 research outputs found

    KAJIAN POTENSI PEPTIDA AKTIF DARI KOLAGEN KULIT IKAN NILA (OREOCHROMIS NILOTICUS) SEBAGAI KANDIDAT ANTIDIABETES TIPE-2 BERDASARKAN STUDI MOLECULAR DOCKING

    Get PDF
    Pada penelitian ini dilakukan kajian potensi peptida aktif dari kolagen kulit ikan nila (Oreochromis niloticus) sebagai kandidat antidiabetes tipe-2 berdasarkan studi molecular docking. Tahapan penelitian meliputi hidrolisis kolagen secara enzimatik menggunakan BIOPEP; seleksi peptida aktif; analisis toksisitas, alergenitas, dan sensori peptida aktif; serta simulasi pengikatan peptida aktif dengan enzim target DM tipe-2. Pembanding yang digunakan yaitu akarbosa, linagliptin, dan polidatin. Hasil hidrolisis kolagen secara in silico menghasilkan tiga belas (13) peptida aktif yang tidak bersifat toksik, non-alergen, serta berasa pahit, asin, dan sebagian tidak terdeteksi. Interaksi molekuler antara enzim α-amilase, α-glukosidase, DPP-IV, dan G6PD dengan peptida aktif melibatkan ikatan hidrogen, gaya van der Waals, interaksi hidrofobik, elektrostatik, pi-sulfur, dan unfavorable. Afinitas pengikatan peptida WF, WY, dan VW dengan α- amilase lebih tinggi 1,7; 1,6; dan 0,8 kkal/mol dibandingkan akarbosa. Kompleks α-glukosidase dengan WF, WY, VW, AF, SF, TF, VF, WG, PPG, RM, PG, PM, dan MG lebih tinggi daripada akarbosa dengan selisih berturut-turut 2,7; 2,6; 2,2; 2,1; 2; 1,9; 1,8; 1,8; 1,7; 1,2; 1; 0,8; dan 0,2 kkal/mol. Kompleks DPP-IV dengan WF, VW, WY, dan WG lebih tinggi 0,8; 0,5; 0,4; dan 0,3 kkal/mol daripada linagliptin. Kompleks G6PD dengan WF, WY, TF, VW, SF, PPG, VF, AF, dan WG lebih tinggi dibandingkan polidatin dengan selisih 1,2; 1,1; 0,7; 0,7; 0,6; 0,5; 0,5; 0,4; dan 0,4 kkal/mol. Peptida aktif menghambat keempat enzim secara kompetitif. Berdasarkan hasil penelitian dapat disimpulkan bahwa peptida aktif dari kolagen kulit ikan nila berpotensi sebagai kandidat antidiabetes tipe-2. Pengujian lebih lanjut secara in vitro dan in vivo perlu dilakukan untuk mendukung prediksi potensi yang diperoleh melalui pemodelan molecular docking. This study aims to evaluate the potential of active peptides from tilapia skin collagen (Oreochromis niloticus) as a candidate for type-2 antidiabetic based on molecular docking. Research stages include enzymatic hydrolysis of collagen using BIOPEP; active peptides selection; toxicity, allergenicity, and sensory analysis of active peptides; and binding simulation of active peptides with type-2 DM target enzymes. The potency of target compounds were compared with acarbose, linagliptin, and polydatin. In silico collagen hydrolysis generates thirteen (13) active peptides that were non-toxic, non-allergenic, bitter-taste, salty, and undetectable-taste. All active peptides interact with α-amylase, α-glucosidase, DPP-IV, and G6PD through hydrogen bonds, van der Waals, hydrophobic, electrostatic, pi-sulfur, and unfavorable interactions. The binding affinity of WF, WY, and VW peptides with α-amylase were 1.7; 1.6; and 0.8 kcal/mole higher than those of acarbose. The α-glucosidase complex with WF, WY, VW, AF, SF, TF, VF, WG, PPG, RM, PG, PM, and MG was higher than that of acarbose with energy difference of 2.7; 2.6; 2.2; 2.1; 2; 1.9; 1.8; 1.8; 1.7; 1,2; 1; 0.8; and 0.2 kcal/mole, respectively. The DPP-IV complex binding affinity with WF, VW, WY, and WG was higher 0.8; 0.5; 0.4; and 0.3 kcal/mole than linagliptin. The G6PD complex with WF, WY, TF, VW, SF, PPG, VF, AF, and WG was higher than polydatin with energy difference of 1.2; 1.1; 0.7; 0.7; 0.6; 0.5; 0.5; 0.4; and 0.4 kcal/mole. All active peptides inhibit the four enzymes competitively. All in all, it can be concluded that the active peptides from tilapia skin collagen have the potential to be used as antidiabetic type-2 candidates. Further in vivo and in vitro evaluation needs to be carried out to support the molecular docking findings

    In silico proteolysis and molecular interaction of tilapia (Oreochromis niloticus) skin collagen-derived peptides for environmental remediation

    No full text
    Fish skin collagen hydrolyzate has demonstrated the potent inhibition of dipeptidyl peptidase-IV (DPP-IV), one of the treatments for type-2 diabetes mellitus (type-2 DM), but the precise mechanism is still unclear. This study used in silico method to evaluate the potential of the active peptides from tilapia skin collagen (Oreochromis niloticus) for DPP-IV inhibitor. The methodology includes collagen hydrolysis using BIOPEP, which is the data-base of bioactive peptides; active peptide selection; toxicity, allergenicity, sensory analysis of active peptides; and binding of active peptides to DPP-IV compared with linagliptin. The result indicated that in silico enzymatic hydrolysis of collagen produced active peptides with better prediction of biological activity than intact collagen. There are 13 active peptides were predicted as non-toxic and non-allergenic, some of which have a bitter, salty, and undetectable taste. Docking simulations showed all active peptides interacted with DPP-IV through hydrogen bonds, van der Waals force, hydrophobic interaction, electrostatic force, π-sulfur, and unfavorable interaction, where WF (Trp-Phe), VW (Val-Trp), WY (Trp-Tyr), and WG (Trp-Gly) displayed higher binding affinities of 0.8; 0.5; 0.4; and 0.3 kcal/mol compared with linagliptin. In this study, we successfully demonstrated antidiabetic type-2 DM potential of the active peptides from tilapia skin collagen. The obtained data provided preliminary data for further research in the utilization of fish skin waste as a functional compound to treat the type-2 DM patients. Alternatively, this treatment can be synergistically combined with the available antidiabetic drugs to improve the insulin secretion of the type-2 DM patients
    corecore