39 research outputs found

    Long-Term Follow-Up of Patients with Scleritis After Rituximab Treatment Including B Cell Monitoring

    Get PDF
    Purpose: We report the long-term effect of rituximab (RTX) in scleritis and determine the value of B-cell monitoring for the prediction of relapses. Methods: We retrospectively studied 10 patients with scleritis, who were treated with RTX. Clinical characteristics were collected, and blood B-cell counts were measured before the start of RTX, and at various time points after treatment. Results:Clinical activity of scleritis decreased after RTX treatment in all patients within a median time of 8 weeks (range 3–13), and all reached remission. The median follow-up was 101 months (range 9–138). Relapses occurred in 6 out of 10 patients. All relapses, where B-cell counts were measured (11 out of 19), were heralded by returning B cells. However, B cells also returned in patients with long-term remissions.Conclusions: RTX is a promising therapeutic option for scleritis. Recurrence of B cells after initial depletion does not always predict relapse of scleritis.</p

    Highly Sensitive Flow Cytometry Allows Monitoring of Changes in Circulating Immune Cells in Blood After Tdap Booster Vaccination

    Get PDF
    © 2021 Diks, Khatri, Oosten, de Mooij, Groenland, Teodosio, Perez-Andres, Orfao, Berbers, Zwaginga, van Dongen and Berkowska.Antigen-specific serum immunoglobulin (Ag-specific Ig) levels are broadly used as correlates of protection. However, in several disease and vaccination models these fail to predict immunity. In these models, in-depth knowledge of cellular processes associated with protective versus poor responses may bring added value. We applied high-throughput multicolor flow cytometry to track over-time changes in circulating immune cells in 10 individuals following pertussis booster vaccination (Tdap, Boostrix®, GlaxoSmithKline). Next, we applied correlation network analysis to extensively investigate how changes in individual cell populations correlate with each other and with Ag-specific Ig levels. We further determined the most informative cell subsets and analysis time points for future studies. Expansion and maturation of total IgG1 plasma cells, which peaked at day 7 post-vaccination, was the most prominent cellular change. Although these cells preceded the increase in Ag-specific serum Ig levels, they did not correlate with the increase of Ig levels. In contrast, strong correlation was observed between Ag-specific IgGs and maximum expansion of total IgG1 and IgA1 memory B cells at days 7 to 28. Changes in circulating T cells were limited, implying the need for a more sensitive approach. Early changes in innate immune cells, i.e. expansion of neutrophils, and expansion and maturation of monocytes up to day 5, most likely reflected their responses to local damage and adjuvant. Here we show that simultaneous monitoring of multiple circulating immune subsets in blood by flow cytometry is feasible. B cells seem to be the best candidates for vaccine monitoring.K is supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 707404. The here presented study is a pilot study for the Innovative Medicines Initiative (IMI) PERISCOPE program, a Joint Undertaking under grant agreement No 115910. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation Programme, the European Federation of Pharmaceutical Industries and Associations (EFPIA), and the Bill and Melinda Gates Foundation (BMGF). The flow cytometric studies in this study were supported by the EuroFlow Consortium. The EuroFlow Consortium received support from the FP6-2004-LIFESCIHEALTH-5 program of the European Commission (grant LSHB-CT-2006-018708) as Specific Targeted Research Project (STREP)

    Acquired and congenital disorders of sung performance: A review.

    Get PDF
    Many believe that the majority of people are unable to carry a tune. Yet, this widespread idea underestimates the singing abilities of the layman. Most occasional singers can sing in tune and in time, provided that they perform at a slow tempo. Here we characterize proficient singing in the general population and identify its neuronal underpinnings by reviewing behavioral and neuroimaging studies. In addition, poor singing resulting from a brain injury or neurogenetic disorder (i.e., tone deafness or congenital amusia) is examined. Different lines of evidence converge in indicating that poor singing is not a monolithic deficit. A variety of poor-singing "phenotypes" are described, with or without concurrent perceptual deficits. In addition, particular attention is paid to the dissociations between specific abilities in poor singers (e.g., production of absolute vs. relative pitch, pitch vs. time accuracy). Such diversity of impairments in poor singers can be traced to different faulty mechanisms within the vocal sensorimotor loop, such as pitch perception and sensorimotor integration

    DataSheet_1_Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood.zip

    Get PDF
    Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual “expert-based”) gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings.Peer reviewe

    Human IgE+ B cells are derived from T cell-dependent and T cell-independent pathways

    No full text
    et al.[Background]: The prevalence of IgE-mediated diseases has been increasing worldwide, yet IgE-expressing B cells are poorly characterized, mainly because of their scarcity and low membrane IgE levels. [Objective]: We sought to study the immunobiology of human IgE-expressing B cells in healthy subjects and patients with allergic disease. [Methods]: We used a stepwise approach for flow cytometric detection and purification of human IgE-expressing B cells in control subjects, CD40 ligand-deficient patients, and patients with atopic dermatitis. Molecular analysis of replication histories, somatic hypermutation (SHM), and immunoglobulin class-switching was performed. [Results]: Using multicolor flow cytometry, we reliably detected IgE-expressing plasma cells and 2 IgE-expressing memory B-cell subsets. These IgE-expressing cells showed molecular and phenotypic signs of antigen responses. The replication history and SHM levels of IgE+ plasma cells and CD27+IgE+ memory B cells fitted with a germinal center (GC)-dependent pathway, often through an IgG intermediate, as evidenced from Sγ remnants in Sμ-Sε switch regions. CD27-IgE+ cells showed limited proliferation and SHM and were present in CD40 ligand-deficient patients, indicating a GC-independent origin. Patients with atopic dermatitis had normal numbers of blood IgE+ plasma cells and CD27+IgE+ memory B cells but increased numbers of CD27-IgE+ memory B cells with high SHM loads compared with those seen in healthy control subjects and patients with psoriasis. [Conclusions]: We delineated GC-dependent and GC-independent IgE+ B-cell responses in healthy subjects and indicated involvement of the GC-independent pathway in a human IgE-mediated disease. These findings provide new insights into the pathogenesis of IgE-mediated diseases and might contribute to accurate monitoring of IgE + B cells in patients with severe disease undergoing anti-IgE treatment.The studies were performed in the Department of Immunology (headed by Professor H. Hooijkaas) as part of the Molecular Medicine Postgraduate School of the Erasmus MC, Rotterdam, The Netherlands.Peer Reviewe

    Real-time quantitative (rq-)pcr approach to quantify the contribution of proliferation to b lymphocyte homeostasis

    No full text
    The cells of the adaptive immune system, B and T lymphocytes, each generate a unique antigen receptor through V(D)J recombination of their immunoglobulin (Ig) and T-cell receptor (TCR) loci, respectively. Such rearrangements join coding elements to form a coding joint and delete the intervening DNA as circular excision products containing the signal joint. These excision circles are relatively stable structures that cannot replicate and have no function in the cell. Since the coding joint in the genome is replicated with each cell division, the ratio between coding joints and signal joints in a population of B cells can be used as a measure for proliferation. This chapter describes a real-time quantitative polymerase chain reaction (RQ-PCR)-based approach to quantify proliferation through calculating the ratio between coding joints and signal joints of the frequently occurring kappa-deleting rearrangements in the IGK light chain loci in man and mouse. The approach is useful to study the contribution of proliferation to B-cell homeostasis in health and disease.</p
    corecore