3,811 research outputs found

    The Assault on Privacy: Computers, Data Banks, and Dossiers, by Arthur R. Miller

    Get PDF

    Search and Seizure and the Exclusionary Rule: A Re-Examination in the Wake of Mapp v. Ohio

    Get PDF

    New Algorithms for Position Heaps

    Full text link
    We present several results about position heaps, a relatively new alternative to suffix trees and suffix arrays. First, we show that, if we limit the maximum length of patterns to be sought, then we can also limit the height of the heap and reduce the worst-case cost of insertions and deletions. Second, we show how to build a position heap in linear time independent of the size of the alphabet. Third, we show how to augment a position heap such that it supports access to the corresponding suffix array, and vice versa. Fourth, we introduce a variant of a position heap that can be simulated efficiently by a compressed suffix array with a linear number of extra bits

    Efficient Seeds Computation Revisited

    Get PDF
    The notion of the cover is a generalization of a period of a string, and there are linear time algorithms for finding the shortest cover. The seed is a more complicated generalization of periodicity, it is a cover of a superstring of a given string, and the shortest seed problem is of much higher algorithmic difficulty. The problem is not well understood, no linear time algorithm is known. In the paper we give linear time algorithms for some of its versions --- computing shortest left-seed array, longest left-seed array and checking for seeds of a given length. The algorithm for the last problem is used to compute the seed array of a string (i.e., the shortest seeds for all the prefixes of the string) in O(n2)O(n^2) time. We describe also a simpler alternative algorithm computing efficiently the shortest seeds. As a by-product we obtain an O(nlog⁥(n/m))O(n\log{(n/m)}) time algorithm checking if the shortest seed has length at least mm and finding the corresponding seed. We also correct some important details missing in the previously known shortest-seed algorithm (Iliopoulos et al., 1996).Comment: 14 pages, accepted to CPM 201

    One-variable word equations in linear time

    Full text link
    In this paper we consider word equations with one variable (and arbitrary many appearances of it). A recent technique of recompression, which is applicable to general word equations, is shown to be suitable also in this case. While in general case it is non-deterministic, it determinises in case of one variable and the obtained running time is O(n + #_X log n), where #_X is the number of appearances of the variable in the equation. This matches the previously-best algorithm due to D\k{a}browski and Plandowski. Then, using a couple of heuristics as well as more detailed time analysis the running time is lowered to O(n) in RAM model. Unfortunately no new properties of solutions are shown.Comment: submitted to a journal, general overhaul over the previous versio

    Is Economic Growth Associated with Reduction in Child Undernutrition in India?

    Get PDF
    An analysis of cross-sectional data from repeated household surveys in India, combined with data on economic growth, fails to find strong evidence that recent economic growth in India is associated with a reduction in child undernutrition

    Improvement of computerized mass detection on mammograms: Fusion of twoĂą view information

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135080/1/mp6098.pd

    Comparison of similarity measures for the task of template matching of masses on serial mammograms

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134879/1/mp1892.pd

    Cross-Document Pattern Matching

    Get PDF
    We study a new variant of the string matching problem called cross-document string matching, which is the problem of indexing a collection of documents to support an efficient search for a pattern in a selected document, where the pattern itself is a substring of another document. Several variants of this problem are considered, and efficient linear-space solutions are proposed with query time bounds that either do not depend at all on the pattern size or depend on it in a very limited way (doubly logarithmic). As a side result, we propose an improved solution to the weighted level ancestor problem
    • 

    corecore