616 research outputs found

    Groundwater vulnerability assessment to assist the measurement planning of the water framework directive : a practical approach with stakeholders

    Get PDF
    An evaluation scheme is presented in this paper which can be used to assess groundwater vulnerability according to the requirements of the European Water Framework Directive (WFD). The evaluation scheme results in a groundwater vulnerability map identifying areas of high, medium and low vulnerability, as necessary for the measurement planning of the WFD. The evaluation scheme is based on the definition of the vulnerability of the Intergovernmental Panel on Climate Change (IPCC). It considers exposure, sensitivity and the adaptive capacity of the region. The adaptive capacity is evaluated in an actors' platform, which was constituted for the region in the PartizipA ("Participative modelling, Actor and Ecosystem Analysis in Regions with Intensive Agriculture") project. As a result of the vulnerability assessment, 21% of the catchment area was classified as being highly vulnerable, whereas 73% has medium vulnerability and 6% has low vulnerability. Thus, a groundwater vulnerability assessment approach is presented, which can be used in practice on a catchment scale for the WFD measurement planning

    A technique for improved stability of adaptive feedforward controllers without detailed uncertainty measurements

    Get PDF
    Model errors in adaptive controllers for reduction of broadband noise and vibrations may lead to unstable systems or increased error signals. Previous work has shown that the addition of a low-authority controller that increases damping in the system may lead to improved performance of an adaptive, high-authority controller. Other researchers have suggested to use frequency dependent regularization based on measured uncertainties. In this paper an alternative method is presented that avoids the disadvantages of these methods namely the additional complex hardware, and the need to obtain detailed information of the uncertainties. An analysis is made of an active noise control system in which a difference exists between the secondary path and the model as used in the controller. The real parts of the eigenvalues that determine the stability of the system are expressed in terms of the amount of uncertainty and the singular values of the secondary path. Based on these expressions, modifications of the feedforward control scheme are suggested that aim to improved performance without requiring detailed uncertainty measurements. For an active noise control system in a room it is shown that the technique leads to improved performance in terms of robustness and the amount of reduction of the error signals

    Adaptive multichannel control of time-varying broadband noise and vibrations

    Get PDF
    This paper presents results obtained from a number of applications in which a recent adaptive algorithm for broadband multichannel active noise control is used. The core of the algorithm uses the inverse of the minimum-phase part of the secondary path for improvement of the speed of convergence. A further improvement of the speed of convergence is obtained by using double control filters for elimination of adaptation loop delay. Regularization was found to be necessary for robust operation. The regularization technique which is used preserves the structure to eliminate the adaptation loop delay. Depending on the application at hand, a number of extensions are used for this algorithm. For an application with rapidly changing disturbance spectra, the core algorithm was extended with an iterative affine projection scheme, leading to improved convergence rates as compared to the standard nomalized lms update rules. In another application, in which the influence of the parametric uncertainties was critical, the core algorithm was extended with low authority control loops operating at high sample rates. In addition, results of other applications are given, such as control of acoustic energy density and control of time-varying periodic and non-periodic vibrations

    Spatially explicit groundwater vulnerability assessment to support the implementation of the Water Framework Directive – a practical approach with stakeholders

    Get PDF
    The main objective of the study presented in this paper was to develop an evaluation scheme which is suitable for spatially explicit groundwater vulnerability assessment according to the Water Framework Directive (WFD). Study area was the Hase river catchment, an area of about 3 000 km2 in north-west Germany which is dominated by livestock farming, in particular pig and poultry production. For the Hase river catchment, the first inventory of the WFD led to the conclusion that 98% of the catchment area is "unclear/unlikely" to reach a good groundwater status due to diffuse nitrogen emissions from agriculture. The groundwater vulnerability assessment was embedded in the PartizipA project ("Participative modelling, Actor and Ecosystem Analysis in Regions with Intensive Agriculture", www.partizipa.net), within which a so-called actors´ platform was established in the study area. The objective of the participatory process was to investigate the effects of the WFD on agriculture as well as to discuss groundwater protection measures which are suitable for an integration in the programme of measures. The study was conducted according to the vulnerability assessment concept of the Intergovernmental Panel on Climate Change, considering sensitivity, exposure and adaptive capacity. Sensitivity was computed using the DRASTIC index of natural groundwater pollution potential. Exposure (for a reference scenario) was computed using the STOFFBILANZ nutrient model. Several regional studies were analysed to evaluate the adaptive capacity. From these studies it was concluded that the adaptive capacity in the Hase river catchment is very low due to the economic importance of the agricultural sector which will be significantly affected by groundwater protection measures. As a consequence, the adaptive capacity was not considered any more in the vulnerability assessment. A groundwater vulnerability evaluation scheme is presented which enjoys the advantage that both exposure and sensitivity can be operationalized in a spatially resolved manner (500×500 m grid) by the two models mentioned above. The evaluation scheme was applied in the Hase river catchment. 21% of the catchment was classified as highly vulnerable, another 73% as medium vulnerable. Only 6% of the Hase river catchment has low vulnerability. Grid cells of the high vulnerability class are considered as priority areas for groundwater protection measures in the programme of measures of the WFD. Measures will be particularly effective in the north-eastern part of the catchment where groundwater vulnerability is mainly due to high nitrogen emissions

    Rapidly converging multichannel controllers for broadband noise and vibrations

    Get PDF
    Applications are given of a preconditioned adaptive algorithm for broadband multichannel active noise control. Based on state-space descriptions of the relevant transfer functions, the algorithm uses the inverse of the minimum-phase part of the secondary path in order to improve the speed of convergence. A further improvement of the convergence rate is obtained by using double control filters for elimination of adaptation loop delay. Regularization was found to be essential for robust operation. The particular regularization technique preserves the structure to eliminate the adaptation loop delay. Depending on the application at hand, a number of extensions are used for this algorithm, such as for applications with rapidly changing disturbance spectra, applications with large parametric uncertainty, applications with control of time-varying acoustic energy density

    Identification and control of acoustic radiation modes

    Get PDF
    A formulation is given of reduced-order acoustic radiation sensors and\ud reduced-order actuators for broadband sound fields. Methods are presented\ud to determine these descriptions from measured data, and their\ud application in systems for broadband active noise control is discussed.\ud One application area is the reduction of sound radiated from plates with\ud structural actuators and structural sensors, using measured or modeled\ud versions of the most efficiently radiating patterns of a vibrating body,\ud the so-called radiation modes. The second application of the radiation\ud mode theory is in active noise barriers for the reduction of traffic noise.\ud Without special precautions most of these systems suffer from spillover;\ud a technique is given to arrive at good reductions at the error sensors with\ud reduced spillover

    Centralised and decentralised configurations for panels with piezoelectric actuators

    Get PDF
    This paper discusses configurations for controlling broadband noise using piezoelectrically excited panels. The configurations can be distinguished by the physical layout and by the control structure. The physical layout of the system has some influence on the complexity of the control algorithms. For particular actuator/sensor combinations and a particular control objective, the control architecture can be decentralized, using very simple feedback or feedforward controllers, at small performance loss when compared to a centralized architecture. For some applications that require a different control objective, an additional centralized or possibly distributed architecture could be beneficial. A hardware realization with an associated control framework that allows the implementation of such a combined centralized-decentralized architecture is shown. Examples that are given are an embedded central control unit with all electronics in a single module and a centralized-decentralized architecture with partly decentralized hardware that is integrated with structural parts

    Correction of concentrated and distributed aberrations in medical ultrasound imaging

    Get PDF
    A method is presented for iterative correction of wave fields aberrated in a plane located at an arbitrary distance from an array transducer. The signals received from the transducer are processed by an inverse extrapolator in such a way that the output yields the transducer signals as if the transducer had been located directly at the position of the aberrator. For subsequent transmission cycles, the same inverse extrapolator is applied to delta pulses at time instants incorporating the time-reversed estimated aberration profile. The method can be applied to scattering and absorptive media, i.e. in medical conditions. The compensation of distributed aberration is also developed. It is shown that correction algorithms intended for concentrated aberrations can be used to reduce effects due to distributed aberrations; our conclusions with respect to the position of the equivalent concentrated aberrator differ from results reported in the literature. The method is demonstrated on realistic simulations of solid lesions, and cysts (voids) disturbed by intervening aberrating medi

    Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones

    Get PDF
    In this paper, two state of the art virtual sensor algorithms, i.e. the Remote Microphone Technique (RMT) and the Kalman filter based Virtual Sensing algorithm (KVS) are compared, in both state space (SS) and finite impulse response (FIR) implementations. The comparison focuses on the accuracy of the estimated sound pressure signals at the virtual locations and is based on actual measurements in a practical situation. The FIR implementation of the RMT algorithm was found to produce the most reliable results. It is implemented in a local, three dimensional, real-time, multiple-channel, broadband active noise control system. With this implementation, the benefits and limitations of the RMT-ANC system on the shape and size of the quiet zones are investigated

    Combined MIMO adaptive and decentralized controllers for broadband active noise and vibration control

    Get PDF
    Recent implementations of multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations provide considerably improved performance over traditional adaptive algorithms. The most significant performance improvements are in terms of speed of convergence, the \ud amount of reduction, and stability of the algorithm. Nevertheless, if the error in the model of the relevant transfer functions becomes too large then the system may become unstable or lose performance. On-line adaptation of the model is possible in principle but, for rapid changes in the model, necessitates \ud a large amount of additional noise to be injected in the system. It has been known for decades that a combination of high-authority control (HAC) and low-authority control (LAC) could lead to improvements with respect to parametric uncertainties and unmodeled dynamics. In this paper a full digital implementation of such a control system is presented in which the HAC (adaptive MIMO control) is implemented on a CPU and in which the LAC (decentralized control) is implemented on a high-speed Field Programmable Gate Array. Experimental results are given in which it is demonstrated that the HAC/LAC combination leads to performance advantages in terms of stabilization under parametric uncertainties and reduction of the error signal
    corecore