42 research outputs found

    Kinetic-Ballooning-Bifurcation in Tokamak Pedestals Across Shaping and Aspect-Ratio

    Full text link
    We use a new gyrokinetic threshold model to predict a bifurcation in tokamak pedestal width-height scalings that depends strongly on plasma shaping and aspect-ratio. The bifurcation arises from the first and second stability properties of kinetic-ballooning-modes that yields wide and narrow pedestal branches, expanding the space of accessible pedestal widths and heights. The wide branch offers potential for edge-localized-mode-free pedestals with high core pressure. For negative triangularity, low-aspect-ratio configurations are predicted to give steeper pedestals than conventional-aspect-ratio. Both wide and narrow branches have been attained in tokamak experiments.Comment: 7 pages, 7 figure

    Learning from Conect4children: A Collaborative Approach towards Standardization of Disease-Specific Paediatric Research Data

    Get PDF
    The conect4children (c4c) initiative was established to facilitate the development of new drugs and other therapies for paediatric patients. It is widely recognized that there are not enough medicines tested in all relevant ages of the paediatric population. To overcome this, it is imperative that clinical data from different sources are interoperable and can be pooled for larger post-hoc studies. c4c has collaborated with the Clinical Data Interchange Standards Consortium (CDISC) to develop the cross-cutting data resources that build on existing CDISC standards, in an effort to standardize paediatric data. The natural next step was an extension to disease-specific data items. c4c brought together several existing initiatives and resources relevant to disease-specific data and to analyse their use for standardizing disease-specific data in clinical trials. Several case studies that combined disease-specific data from multiple trials have demonstrated the need for disease-specific data standardization. We identified three relevant initiatives. These include European Reference Networks, European Joint Programme on Rare Diseases, and Pistoia Alliance. Other resources reviewed were: National Cancer Institute Enterprise Vocabulary Services, CDISC standards, pharmaceutical company-specific data dictionaries, Human Phenotype Ontology, Phenopackets, Unified Registry for Inherited Metabolic Disorders, Orphacodes, Rare Disease Cures Accelerator-Data and Analytics Platform (RDCA-DAP) and Observational Medical Outcomes Partnership. The collaborative partners associated with these resources were also reviewed briefly. A plan of action focussed on collaboration was generated for standardizing disease-specific paediatric clinical trial data. A paediatric data standards multistakeholder and multi-project user group was established to guide the remaining actions– FAIRification of metadata, a Phenopackets pilot with RDCA-DAP, applying Orphacodes to case report forms of clinical trials, introducing CDISC standards into European Reference Networks, testing of the CDISC Pediatric User Guide using data from the mentioned resources and organization of further workshops and educational materials

    Overview of physics results from NSTX

    Full text link

    Experimental Study of Unsupported Nonane fuel Droplet Combustion in Microgravity

    No full text
    Soot formation in droplet flames is the basic component of the particulate emission process that occurs in spray combustion. The complexity of soot formation motivates a one-dimensional transport condition which has obvious advantages in modeling. Recent models of spherically symmetric droplet combustion have made this assumption when incorporating such aspects as detailed chemistry and radiation. Interestingly, spherical symmetry does not necessarily restrict the results because it has been observed that the properties of carbon formed in flames are not strongly affected by the nature of the fuel or flaming configuration. What is affected, however, are the forces acting on the soot aggregates and where they are trapped by a balance of drag and thermophoretic forces. The distribution of these forces depends on the transport conditions of the flame. Prior studies of spherical droplet flames have examined the droplet burning history of alkanes, alcohols and aromatics. Data are typically the evolution of droplet, flame, extinction, and soot shell diameters. These data are only now just beginning to find their way into comprehensive numerical models of droplet combustion to test proposed oxidation schemes for fuels such as methanol and heptane. In the present study, we report new measurements on the burning history of unsupported nonane droplets in a convection-free environment to promote spherical symmetry. The far-field gas is atmospheric pressure air at room temperature. The evolution of droplet diameter was measured using high speed cine photography of a spark-ignited, droplet within a confined volume in a drop tower. The initial droplet diameters varied between 0.5 mm and 0.6 mm. The challenge of unsupported droplets is to form, deploy and ignite them with minimal disturbance, and then to keep them in the camera field of view. Because of the difficulty of this undertaking, more sophisticated diagnostics for studying soot than photographic were not used. Supporting the test droplet by a fiber fixes the droplet position but the fiber can perturb the burning process especially for a sooting fuel. Prior studies on heptane showed little evidence for soot formation due to g-droplets of similar size the relationship between sooting and droplet diameter. For nonane droplets we expect increased sooting due to the greater number of carbon atoms. As a sooting droplet burns and its diameter decreases, proportionally less soot should form. This reduced soot, as well as the influence of soot formed earlier in the burning process which collects in a 'shell', on heat transport to the flame offers the potential for a time-varying burning rate. Such an effect was investigated and revealed in results reported here. Speculation is offered for the cause of this effect and its possible relation to soot formation
    corecore