457 research outputs found

    Universality aspects of the d=3 random-bond Blume-Capel model

    Full text link
    The effects of bond randomness on the universality aspects of the simple cubic lattice ferromagnetic Blume-Capel model are discussed. The system is studied numerically in both its first- and second-order phase transition regimes by a comprehensive finite-size scaling analysis. We find that our data for the second-order phase transition, emerging under random bonds from the second-order regime of the pure model, are compatible with the universality class of the 3d random Ising model. Furthermore, we find evidence that, the second-order transition emerging under bond randomness from the first-order regime of the pure model, belongs to a new and distinctive universality class. The first finding reinforces the scenario of a single universality class for the 3d Ising model with the three well-known types of quenched uncorrelated disorder (bond randomness, site- and bond-dilution). The second, amounts to a strong violation of universality principle of critical phenomena. For this case of the ex-first-order 3d Blume-Capel model, we find sharp differences from the critical behaviors, emerging under randomness, in the cases of the ex-first-order transitions of the corresponding weak and strong first-order transitions in the 3d three-state and four-state Potts models.Comment: 12 pages, 12 figure

    Uncovering the secrets of the 2d random-bond Blume-Capel model

    Get PDF
    The effects of bond randomness on the ground-state structure, phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel (BC) model are discussed. The calculation of ground states at strong disorder and large values of the crystal field is carried out by mapping the system onto a network and we search for a minimum cut by a maximum flow method. In finite temperatures the system is studied by an efficient two-stage Wang-Landau (WL) method for several values of the crystal field, including both the first- and second-order phase transition regimes of the pure model. We attempt to explain the enhancement of ferromagnetic order and we discuss the critical behavior of the random-bond model. Our results provide evidence for a strong violation of universality along the second-order phase transition line of the random-bond version.Comment: 6 LATEX pages, 3 EPS figures, Presented by AM at the symposium "Trajectories and Friends" in honor of Nihat Berker, MIT, October 200

    High-Precision Thermodynamic and Critical Properties from Tensor Renormalization-Group Flows

    Full text link
    The recently developed tensor renormalization-group (TRG) method provides a highly precise technique for deriving thermodynamic and critical properties of lattice Hamiltonians. The TRG is a local coarse-graining transformation, with the elements of the tensor at each lattice site playing the part of the interactions that undergo the renormalization-group flows. These tensor flows are directly related to the phase diagram structure of the infinite system, with each phase flowing to a distinct surface of fixed points. Fixed-point analysis and summation along the flows give the critical exponents, as well as thermodynamic functions along the entire temperature range. Thus, for the ferromagnetic triangular lattice Ising model, the free energy is calculated to better than 10^-5 along the entire temperature range. Unlike previous position-space renormalization-group methods, the truncation (of the tensor index range D) in this general method converges under straightforward and systematic improvements. Our best results are easily obtained with D = 24, corresponding to 4624-dimensional renormalization-group flows.Comment: 6 pages, 5 figure

    Multicritical Points and Crossover Mediating the Strong Violation of Universality: Wang-Landau Determinations in the Random-Bond d=2d=2 Blume-Capel model

    Full text link
    The effects of bond randomness on the phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel model are discussed. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method for many values of the crystal field, restricted here in the second-order phase transition regime of the pure model. For the random-bond version several disorder strengths are considered. We present phase diagram points of both pure and random versions and for a particular disorder strength we locate the emergence of the enhancement of ferromagnetic order observed in an earlier study in the ex-first-order regime. The critical properties of the pure model are contrasted and compared to those of the random model. Accepting, for the weak random version, the assumption of the double logarithmic scenario for the specific heat we attempt to estimate the range of universality between the pure and random-bond models. The behavior of the strong disorder regime is also discussed and a rather complex and yet not fully understood behavior is observed. It is pointed out that this complexity is related to the ground-state structure of the random-bond version.Comment: 12 pages, 11 figures, submitted for publicatio

    Potts-Percolation-Gauss Model of a Solid

    Full text link
    We study a statistical mechanics model of a solid. Neighboring atoms are connected by Hookian springs. If the energy is larger than a threshold the "spring" is more likely to fail, while if the energy is lower than the threshold the spring is more likely to be alive. The phase diagram and thermodynamic quantities, such as free energy, numbers of bonds and clusters, and their fluctuations, are determined using renormalization-group and Monte-Carlo techniques.Comment: 10 pages, 12 figure

    Exact solution of mean geodesic distance for Vicsek fractals

    Full text link
    The Vicsek fractals are one of the most interesting classes of fractals and the study of their structural properties is important. In this paper, the exact formula for the mean geodesic distance of Vicsek fractals is found. The quantity is computed precisely through the recurrence relations derived from the self-similar structure of the fractals considered. The obtained exact solution exhibits that the mean geodesic distance approximately increases as an exponential function of the number of nodes, with the exponent equal to the reciprocal of the fractal dimension. The closed-form solution is confirmed by extensive numerical calculations.Comment: 4 pages, 3 figure

    Random site dilution properties of frustrated magnets on a hierarchical lattice

    Full text link
    We present a method to analyze magnetic properties of frustrated Ising spin models on specific hierarchical lattices with random dilution. Disorder is induced by dilution and geometrical frustration rather than randomness in the internal couplings of the original Hamiltonian. The two-dimensional model presented here possesses a macroscopic entropy at zero temperature in the large size limit, very close to the Pauling estimate for spin-ice on pyrochlore lattice, and a crossover towards a paramagnetic phase. The disorder due to dilution is taken into account by considering a replicated version of the recursion equations between partition functions at different lattice sizes. An analysis at first order in replica number allows for a systematic reorganization of the disorder configurations, leading to a recurrence scheme. This method is numerically implemented to evaluate the thermodynamical quantities such as specific heat and susceptibility in an external field.Comment: 26 pages, 11 figure

    Phase Separation and Charge-Ordered Phases of the d = 3 Falicov-Kimball Model at T>0: Temperature-Density-Chemical Potential Global Phase Diagram from Renormalization-Group Theory

    Full text link
    The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The CO phases occur at and near half filling of the conduction electrons for the entire range of localized electron densities. The phase boundaries are second order, except for the intermediate and large interaction regimes, where a first-order phase boundary occurs in the central region of the phase diagram, resulting in phase coexistence at and near half filling of both localized and conduction electrons. These two-phase or three-phase coexistence regions are between different charge-ordered phases, between charge-ordered and disordered phases, and between dense and dilute disordered phases. The second-order phase boundaries terminate on the first-order phase transitions via critical endpoints and double critical endpoints. The first-order phase boundary is delimited by critical points. The cross-sections of the global phase diagram with respect to the chemical potentials and densities of the localized and conduction electrons, at all representative interactions strengths, hopping strengths, and temperatures, are calculated and exhibit ten distinct topologies.Comment: Calculated density phase diagrams. Added discussions and references. 14 pages, 9 figures, 4 table

    Real-space renormalization group for the random-field Ising model

    Full text link
    We present real--space renormalization group (RG) calculations of the critical properties of the random--field Ising model on a cubic lattice in three dimensions. We calculate the RG flows in a two--parameter truncation of the Hamiltonian space. As predicted, the transition at finite randomness is controlled by a zero temperature, disordered critical fixed point, and we exhibit the universal crossover trajectory from the pure Ising critical point. We extract scaling fields and critical exponents, and study the distribution of barrier heights between states as a function of length scale.Comment: 12 pages, CU-MSC-757

    Critical Fluctuations and Disorder at the Vortex Liquid to Crystal Transition in Type-II Superconductors

    Full text link
    We present a functional renormalization group (FRG) analysis of a Landau-Ginzburg model of type-II superconductors (generalized to n/2n/2 complex fields) in a magnetic field, both for a pure system, and in the presence of quenched random impurities. Our analysis is based on a previous FRG treatment of the pure case [E.Br\'ezin et. al., Phys. Rev. B, {\bf 31}, 7124 (1985)] which is an expansion in ϵ=6d\epsilon = 6-d. If the coupling functions are restricted to the space of functions with non-zero support only at reciprocal lattice vectors corresponding to the Abrikosov lattice, we find a stable FRG fixed point in the presence of disorder for 1<n<41<n<4, identical to that of the disordered O(n)O(n) model in d2d-2 dimensions. The pure system has a stable fixed point only for n>4n>4 and so the physical case (n=2n = 2) is likely to have a first order transition. We speculate that the recent experimental findings that disorder removes the apparent first order transition are consistent with these calculations.Comment: 4 pages, no figures, typeset using revtex (v3.0
    corecore