142 research outputs found

    Mercuration of vanillyl-alcohol oxidase from Penicillium simplicissimum generates inactive dimers

    Get PDF
    Vanillyl-alcohol oxidase (EC 1.1.3.7) from Penicillium simplicissimum was modified with p-mercuribenzoate. One cysteine residue reacts rapidly without loss of enzyme activity. Three sulfhydryl groups then react in an `all or none process' involving enzyme inactivation and dissociation of the octamer into dimers. The inactivation reaction is slowed down in the presence of the competitive inhibitor isoeugenol and fully reversible by treatment of the modified enzyme with dithiothreitol. Vanillyl-alcohol oxidase is more rapidly inactivated at low enzyme concentrations and protected from mercuration by antichaotropic salts. It is proposed that subunit dissociation accounts for the observed sensitivity of vanillyl-alcohol oxidase crystals towards mercury compounds

    On the origin of vanillyl alcohol oxidases

    Get PDF
    Vanillyl alcohol oxidase (VAO) is a fungal flavoenzyme that converts a wide range of para-substituted phenols. The products of these conversions, e.g. vanillin, coniferyl alcohol and chiral aryl alcohols, are of interest for several industries. VAO is the only known fungal member of the 4-phenol oxidising (4PO) subgroup of the VAO/PCMH flavoprotein family. While the enzyme has been biochemically characterised in great detail, little is known about its physiological role and distribution in fungi. We have identified and analysed novel, fungal candidate VAOs and found them to be mostly present in Pezizomycotina and Agaricomycotina. The VAOs group into three clades, of which two clades do not have any characterised member. Interestingly, bacterial relatives of VAO do not form a single outgroup, but rather split up into two separate clades. We have analysed the distribution of candidate VAOs in fungi, as well as their genomic environment. VAOs are present in low frequency in species of varying degrees of relatedness and in regions of low synteny. These findings suggest that fungal VAOs may have originated from bacterial ancestors, obtained by fungi through horizontal gene transfer. Because the overall conservation of fungal VAOs varies between 60 and 30% sequence identity, we argue for a more reliable functional prediction using critical amino acid residues. We have defined a sequence motif P-x-x-x-x-S-x-G-[RK]-N-x-G-Y-G-[GS] that specifically recognizes 4PO enzymes of the VAO/PCMH family, as well as additional motifs that can help to further narrow down putative functions. We also provide an overview of fingerprint residues that are specific to VAOs

    Identification of a Baeyer-Villiger monooxygenase sequence motif

    Get PDF
    Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXRXXXW(P/D). Studies with site-directed mutants of 4-hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB suggest that this fingerprint sequence is critically involved in catalysis. Further sequence analysis showed that the BVMOs belong to a novel superfamily that comprises three known classes of FAD-dependent monooxygenases: the so-called flavin-containing monooxygenases (FMOs), the N-hydroxylating monooxygenases (NMOs), and the BVMOs. Interestingly, FMOs contain an almost identical sequence motif when compared to the BVMO sequences: FXGXXXHXXX(Y/F). Using these novel amino acid sequence fingerprints, BVMOs and FMOs can be readily identified in the protein sequence databank. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved

    Structural analysis of flavinylation in vanillyl-alcohol oxidase

    Get PDF
    Vanillyl-alcohol oxidase (VAO) is member of a newly recognized flavoprotein family of structurally related oxidoreductases. The enzyme contains a covalently linked FAD cofactor. To study the mechanism of flavinylation we have created a design point mutation (His-61 --> Thr). In the mutant enzyme the covalent His-C8 alpha -flavin linkage is not formed, while the enzyme is still able to bind FAD and perform catalysis. The H61T mutant displays a similar affinity for FAD and ADP (K-d = 1.8 and 2.1 muM, respectively) but does not interact with FMN. H61T is about 10-fold less active with 4-(methoxymethyl)phenol) (k(cat) = 0.24 s(-1), K-m = 40 muM) than the wild-type enzyme. The crystal structures of both the hole and apo form of H61T are highly similar to the structure of wild-type VAO, indicating that binding of FAD to the apoprotein does not require major structural rearrangements. These results show that covalent flavinylation is an autocatalytical process in which His-BI plays a crucial role by activating His-422. Furthermore, our studies clearly demonstrate that in VAO, the FAD binds via a typical lock-and-key approach to a preorganized binding site

    Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase

    Get PDF
    By mutating the target residue of covalent flavinylation in vanillyl-alcohol oxidase, the functional role of the histidyl-FAD bond was studied. Three His(422) mutants (H422A, H422T, and H422C) were purified, which all contained tightly but noncovalently bound FAD. Steady state kinetics revealed that the mutants have retained enzyme activity, although the turnover rates have decreased by 1 order of magnitude. Stopped-flow analysis showed that the H422A mutant is still able to form a stable binary complex of reduced enzyme and a quinone methide product intermediate, a crucial step during vanillyl-alcohol oxidase-mediated catalysis, The only significant change in the catalytic cycle of the H422A mutant is a marked decrease in reduction rate. Redox potentials of both wild type and H422A vanillyl-alcohol oxidase have been determined. During reduction of H422A, a large portion of the neutral flavin semiquinone is observed. Using suitable reference dyes, the redox potentials for the two one-electron couples have been determined: -17 and -113 mV. Reduction of wild type enzyme did not result in any formation of flavin semiquinone and revealed a remarkably high redox potential of +55 mV, The marked decrease in redox potential caused by the missing covalent histidyl-FAD bond is reflected in the reduced rate of substrate-mediated flavin reduction limiting the turnover rate. Elucidation of the crystal structure of the H422A mutant established that deletion of the histidyl-FAD bond did not result in any significant structural changes. These results clearly indicate that covalent interaction of the isoalloxazine ring with the protein moiety can markedly increase the redox potential of the flavin cofactor, thereby facilitating redox catalysis, Thus, formation of a histidyl-EAD bond in specific flavoenzymes might have evolved as a way to contribute to the enhancement of their oxidative power

    Phe161 and Arg166 variants of p-hydroxybenzoate hydroxylase Implications for NADPH recognition and structural stability

    Get PDF
    AbstractPhe161 and Arg166 of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens belong to a newly discovered sequence motif in flavoprotein hydroxylases with a putative dual function in FAD and NADPH binding [1]. To study their role in more detail, Phe161 and Arg166 were selectively changed by site-directed mutagenesis. F161A and F161G are catalytically competent enzymes having a rather poor affinity for NADPH. The catalytic properties of R166K are similar to those of the native enzyme. R166S and R166E show impaired NADPH binding and R166E has lost the ability to bind FAD. The crystal structure of substrate complexed F161A at 2.2 Ã… is indistinguishable from the native enzyme, except for small changes at the site of mutation. The crystal structure of substrate complexed R166S at 2.0 Ã… revealed that Arg166 is important for providing an intimate contact between the FAD binding domain and a long excursion of the substrate binding domain. It is proposed that this interaction is essential for structural stability and for the recognition of the pyrophosphate moiety of NADPH

    A xylenol orange-based screening assay for the substrate specificity of flavin-dependent para-phenol oxidases

    Get PDF
    Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para-substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para-phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para-phenol oxidases, facilitating the enzyme engineering of known para-phenol oxidases and the evaluation of the substrate specificity of novel para-phenol oxidases

    Enzymatic synthesis of vanillin

    Get PDF
    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated conversion of creosol proceeds via a two-step process in which the initially formed vanillyl alcohol is further oxidized to vanillin. Catalysis is limited by the formation of an abortive complex between enzyme-bound flavin and creosol. Moreover, in the second step of the process, the conversion of vanillyl alcohol is inhibited by the competitive binding of creosol. The VAO-catalyzed conversion Of vanillylamine proceeds efficiently at alkaline pH values. Vanillylamine is initially converted to a vanillylimine intermediate product, which is hydrolyzed nonenzymatically to vanillin. This route to vanillin has biotechnological potential as the widely available principle of red pepper, capsaicin, can be hydrolyzed enzymatically to vanillylamine
    • …
    corecore