8 research outputs found

    Acoustoelastic analysis of soft viscoelastic solids with application to pre-stressed phononic crystals

    Get PDF
    The effective dynamic properties of specific periodic structures involving rubber-like materials can be adjusted by pre-strain, thus facilitating the design of custom acoustic filters. While nonlinear viscoelastic behaviour is one of the main features of soft solids, it has been rarely incorporated in the study of such phononic media. Here, we study the dynamic response of nonlinear viscoelastic solids within a ‘small-on-large’ acoustoelasticity framework, that is we consider the propagation of small amplitude waves superimposed on a large static deformation. Incompressible soft solids whose behaviour is described by the Fung–Simo quasi-linear viscoelasticity theory (QLV) are considered. We derive the incremental equations using stress-like memory variables governed by linear evolution equations. Thus, we show that wave dispersion follows a strain-dependent generalised Maxwell rheology. Illustrations cover the propagation of plane waves under homogeneous tensile strain in a QLV Mooney–Rivlin solid. The acoustoelasticity theory is then applied to phononic crystals involving a lattice of hollow cylinders, by making use of a dedicated perturbation approach. In particular, results highlight the influence of viscoelastic dissipation on the location of the first band gap. We show that dissipation shifts the band gap frequencies, simultaneously increasing the band gap width. These results are relevant to practical applications of soft viscoelastic solids subject to static pre-stress

    Analytical solution to the 1D nonlinear elastodynamics with general constitutive laws

    No full text
    International audienceUnder the hypothesis of small deformations, the equations of 1D elastodynamics write as a 2 × 2 hyperbolic system of conservation laws. Here, we study the Riemann problem for convex and nonconvex constitutive laws. In the convex case, the solution can include shock waves or rarefaction waves. In the nonconvex case, compound waves must also be considered. In both convex and nonconvex cases, a new existence criterion for the initial velocity jump is obtained. Also, admissibility regions are determined. Lastly, analytical solutions are completely detailed for various constitutive laws (hyperbola, tanh and polynomial), and reference test cases are proposed

    A Finite-Volume Approach to 1D Nonlinear Elastic Waves: Application to Slow Dynamics

    Get PDF
    International audienceA numerical method for longitudinal wave propagation in nonlinear elastic solids is presented. Here, we consider polynomial stress-strain relationships, which are widely used in nondestructive evaluation. The large-strain and infinitesimal-strain constitutive laws deduced from Murnaghan'sl aw are detailed, and polynomial expressions are obtained. The Lagrangian equations of motion yield ahyperbolic system of conservation laws. The latter is solved numerically using afi nite-volume method with flux limiters based on Roe linearization. The method is tested on the Riemann problem, which yields nonsmooth solutions. The method is then applied to acontinuum model with one scalar internal variable, accounting for the softening of the material (slowdynamics)
    corecore