
International Journal of Solids and Structures 241 (2022) 111529

A
0

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

Acoustoelastic analysis of soft viscoelastic solids with application to
pre-stressed phononic crystals
Harold Berjamin a,∗, Riccardo De Pascalis b

a School of Mathematical and Statistical Sciences, NUI Galway, University Road, Galway, Republic of Ireland
b Dipartimento di Matematica e Fisica ‘E. De Giorgi’, Università del Salento, Via per Arnesano, 73100, Lecce, Italy

A R T I C L E I N F O

Keywords:
Viscoelastic material
Finite strain
Soft solids
Phononic crystal
Tunable band gap

A B S T R A C T

The effective dynamic properties of specific periodic structures involving rubber-like materials can be adjusted
by pre-strain, thus facilitating the design of custom acoustic filters. While nonlinear viscoelastic behaviour
is one of the main features of soft solids, it has been rarely incorporated in the study of such phononic
media. Here, we study the dynamic response of nonlinear viscoelastic solids within a ‘small-on-large’
acoustoelasticity framework, that is we consider the propagation of small amplitude waves superimposed
on a large static deformation. Incompressible soft solids whose behaviour is described by the Fung–Simo
quasi-linear viscoelasticity theory (QLV) are considered. We derive the incremental equations using stress-
like memory variables governed by linear evolution equations. Thus, we show that wave dispersion follows
a strain-dependent generalised Maxwell rheology. Illustrations cover the propagation of plane waves under
homogeneous tensile strain in a QLV Mooney–Rivlin solid. The acoustoelasticity theory is then applied to
phononic crystals involving a lattice of hollow cylinders, by making use of a dedicated perturbation approach.
In particular, results highlight the influence of viscoelastic dissipation on the location of the first band gap. We
show that dissipation shifts the band gap frequencies, simultaneously increasing the band gap width. These
results are relevant to practical applications of soft viscoelastic solids subject to static pre-stress.
1. Introduction

Solid rubber has been used in various cultural and engineering
applications since ancient Mesoamerican times (Hosler et al., 1999).
Mechanically, elastomers (including rubber vulcanisates) are very soft
solids, a property that is also found in many soft biological materials
such as skin, blood vessels, muscle, lung or brain tissue (Holzapfel and
Ogden, 2003; Al Mayah, 2018). Due to their high strength, they can
support very large elastic deformations. Moreover, they can exhibit
large hysteresis loops in loading–unloading experiments, as well as
creep and relaxation phenomena (Ciambella et al., 2010). From these
observations, one deduces that the mechanical stress is not solely
function of the deformation. In isothermal or isentropic configurations,
it is therefore quite natural to consider finite-strain viscoelastic material
models to account for the dissipation of mechanical energy.

Among various theories found in the modelling literature, a nearly-
incompressible viscoelastic model with internal variables was intro-
duced by Simo (1987). In the limit of perfect incompressibility, the
latter amounts to Fung’s quasi-linear viscoelasticity (QLV) (Fung, 1993;
De Pascalis et al., 2014) when the corresponding relaxation function is
a scalar Prony series (under these assumptions, we will refer to it as
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‘Fung–Simo’ model). Despite experiments revealing the limits of this
modelling approach (Ciambella et al., 2010), it has remained a very
popular theory due to its simplicity and its ability to reproduce the
main features of nonlinear viscoelastic behaviour, see De Pascalis et al.
(2018), Jridi et al. (2019) and Helisaz et al. (2021) to name a few recent
experimental studies.

‘Small-on-large’ incremental motions are obtained by superposition
of an infinitesimal deformation on a large static deformation. Such
deformations have lead to numerous studies in mechanics, e.g. with ap-
plications to the propagation of small-amplitude waves in pre-stressed
composites and phononic crystals (Galich et al., 2017; Barnwell et al.,
2016). As far as viscoelastic solids are concerned, the literature is
less abundant. Destrade et al. (2009) studied incremental motions for
soft solids of the differential type (i.e., nonlinear Kelvin–Voigt solids),
which are unable to capture stress relaxation phenomena (Banks et al.,
2011). Parnell and De Pascalis (2019) overcome this limitation by ad-
dressing QLV acoustoelasticity in a specific configuration. The present
study extends QLV acoustoelasticity to more general settings by making
vailable online 26 February 2022
020-7683/© 2022 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.ijsolstr.2022.111529
Received 18 November 2021; Received in revised form 11 February 2022; Accepte
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 16 February 2022

http://www.elsevier.com/locate/ijsolstr
http://www.elsevier.com/locate/ijsolstr
mailto:harold.berjamin@nuigalway.ie
mailto:riccardo.depascalis@unisalento.it
https://doi.org/10.1016/j.ijsolstr.2022.111529
https://doi.org/10.1016/j.ijsolstr.2022.111529
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2022.111529&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Solids and Structures 241 (2022) 111529H. Berjamin and R. De Pascalis

p
i

𝑭

w
a
c
b
t

c

𝐽

p
t

r

use of stress-like memory variables that arise naturally in the expres-
sion of the stress. This way, we provide a guide to the analysis of
incremental motions in incompressible Fung–Simo solids.

The phononic crystal described by Barnwell et al. (2016) consists of
soft cylinders inserted periodically into a host material, thus forming a
square lattice. For this specific system, recent works have shown how
an applied pre-stress can influence wave propagation properties in the
absence of dissipation (De Pascalis et al., 2020), including the control of
the band gaps that arise in the dispersion diagrams. To design optimal
structures for specific purposes (such as noise filtering and wave guid-
ing, cf. Deymier (2013)), it is therefore essential to understand how the
geometric and constitutive parameters can influence the band structure.

Despite these advances, the authors are not currently aware of a
practical realisation of the system introduced by Barnwell et al. (2016),
or any variant. Nevertheless, this specific phononic crystal remains an
interesting academic example of a mechanical system whose effective
dynamic properties can be tuned by pre-stress. Although rubber-like
materials are often assumed elastic, viscoelastic behaviour eventually
introduces frequency-dependent dissipation. In the perspective of po-
tential experimental realisations (e.g., based on polymer 3D printing),
it is therefore interesting to analyse the effects of dissipation on the
dispersion diagrams.

As far as material dissipation is concerned, the phononic crystals
literature includes studies of spring–mass systems with damping and
of continuous systems with linear viscoelastic behaviour (Hussein,
2009; Hussein and Frazier, 2010). In particular, similar configurations
to Barnwell et al. (2016) were investigated in the limit of linear
viscoelasticity (Wang et al., 2015; Krushynska et al., 2016). Never-
theless, to the authors’ present knowledge, continuous systems with
nonlinear viscoelastic behaviour were seldom considered (Parnell and
De Pascalis, 2019).

In the present study, we investigate the effects of viscoelastic
dissipation on the above-mentioned pre-stressed periodic structure
from Barnwell et al. (2016) at low frequencies, i.e. about the first
band gap. Using the plane-wave expansion method, the ‘small-on-
large’ QLV theory is used to analyse the propagation of viscoelastic
Bloch waves in the phononic crystal. For this purpose, a dedicated
viscoelastic perturbation is introduced, based on the assumption that
the viscoelastic material parameters do not vary in space (contrary
to the elastic parameters). We find that dissipation shifts the band
gap frequencies, simultaneously increasing the band gap width. It is
therefore crucial to account for viscoelastic behaviour in soft phononic
media where dissipation produces non-negligible effects.

The paper is organised as follows. Section 2 presents the equations
of motion, their incremental counterpart, as well as the propagation of
plane waves in homogeneous pre-stressed media with Mooney–Rivlin
QLV behaviour. In Section 3, the theory is applied to the periodic
structure of Barnwell et al. (2016) by considering the propagation of
small-amplitude antiplane waves in the pre-stressed phononic crystal.
The effect of loss is analysed by means of a perturbation approach.
Conclusions and prospects are detailed in Section 4. In the Appendix,
we show how the thermodynamic analysis of Berjamin et al. (2021) can
be adapted to the case of incompressible QLV solids.

2. Acoustoelastic motion of viscoelastic solids

2.1. Preliminaries

In what follows, we present the basic equations of incompressible
Lagrangian solid dynamics (Holzapfel, 2000). We consider a homoge-
neous and isotropic solid continuum on which no external volume force
is applied. Furthermore, self-gravitation is neglected. A particle initially
located at some position 𝑿 of the reference configuration moves to a
osition 𝒙 of the current configuration. The deformation gradient tensor
s the second-order tensor defined as

= 𝜕𝒙 = 𝑰 + Grad 𝒖 , (1)
2

𝜕𝑿
here 𝒖 = 𝒙 − 𝑿 is the displacement field, 𝑰 is the metric tensor,
nd Grad denotes the gradient operator with respect to the material
oordinates 𝑿 (Lagrangian gradient). If the Euclidean space is described
y an orthonormal basis {𝒆1, 𝒆2, 𝒆3} and a Cartesian coordinate system,
hen 𝑰 has Kronecker delta components 𝑰 = [𝛿𝑖𝑗 ].

In the analysis, we consider incompressible materials, for which the
onstraint of no volume dilatation

= det 𝑭 ≡ 1 (2)

is prescribed at all times, so that the mass density 𝜌 is constant.
Various strain tensors are defined as functions of 𝑭 , such as the left
Cauchy–Green tensor 𝑩 = 𝑭𝑭 ⊺, the right Cauchy–Green tensor 𝑪 =
𝑭 ⊺𝑭 , and the Green–Lagrange tensor 𝑬 = 1

2 (𝑪 − 𝑰). Sometimes, the
rincipal stretches 𝜆𝑖 are introduced. Their squares 𝜆2𝑖 correspond to
he eigenvalues of 𝑨 ∈ {𝑩,𝑪}. Thus, the invariants 𝐼𝑖 of 𝑨 are given

by

𝐼1 = tr𝑨 = 𝜆21 + 𝜆22 + 𝜆23
𝐼2 =

1
2

(

(tr𝑨)2 − tr(𝑨2)
)

= 𝜆−21 + 𝜆−22 + 𝜆−23
𝐼3 = det𝑨 = 𝜆21𝜆

2
2𝜆

2
3 ≡ 1 ,

(3)

under the incompressibility constraint (2). Note that 𝐼3 is related to the
volume dilatation (2) through 𝐼3 = 𝐽 2.

In the absence of body forces, the motion is also governed by the
conservation of momentum

𝜌𝒗̇ = Div𝑷 or 𝜌𝒗̇ = div𝑻 (4)

where the first Piola–Kirchhoff stress tensor 𝑷 and the Cauchy stress
tensor 𝑻 = 𝑷𝑭 ⊺ = 𝑻 ⊺ are specified by the constitutive law. These
stress tensors are also related to the second Piola–Kirchhoff stress tensor
𝑺 = 𝑭 −1𝑷 which satisfies 𝑻 = 𝑭𝑺𝑭 ⊺ for incompressible solids. While
‘Div’ is the Lagrangian gradient’s trace, the differential operator ‘div’
is computed with respect to 𝒙 (Eulerian divergence). The ‘dot’ denotes
the material time derivative.

The present definitions are consistent with notation used in the
monograph by Holzapfel (2000). The divergence in Eq. (4) reads
[div𝑻 ]𝑖 = 𝑇𝑖𝑗,𝑗 componentwise, where indices after the coma denote
spatial differentiation, and summation over repeated indices is per-
formed. In some other texts, a transposed definition of the divergence
is used, see e.g. Destrade et al. (2009). In this case, the Lagrangian
equation of motion involves the material divergence of the nominal
stress tensor 𝑷 ⊺ instead of 𝑷 .

2.2. Fung–Simo incompressible viscoelasticity

Fung’s quasi-linear viscoelasticity (QLV) or Fung’s model of viscoelas-
ticity is presented below (see Section 7.13 of Fung (1993)). This model
is based on the assumption that the stress is linearly dependent on
the history of the elastic stress response by considering a fading mem-
ory effect with a Boltzmann superposition principle and that the vis-
cous relaxation rate is independent of the instantaneous local strain.
By analogy with linear viscoelasticity (Carcione, 2015), the second
Piola–Kirchhoff stress is therefore given by (Fung, 1993)

𝑺 = G ∗ 𝑺̇e = ∫

+∞

−∞
G(𝑡 − 𝑠) ∶ 𝑺̇e(𝑠)d𝑠 = Ġ ∗ 𝑺e (5)

for compressible solids, where the colon denotes double contraction
G ∶ 𝑺̇e = [𝐺𝑖𝑗𝑘𝓁𝑆̇e

𝑘𝓁]. The stress tensor 𝑺e = 2 𝜕𝑊 ∕𝜕𝑪 is the elastic
esponse derived from a strain energy density function 𝑊 , and G is a

fourth-order relaxation tensor.
Although other choices can be made, scalar relaxation is sometimes

assumed (Taylor et al., 2009; Wineman, 2009) by choosing the fourth-
order relaxation tensor G = 𝒢 Is along the symmetric identity tensor
Is = 1

2 [𝛿𝑖𝑘𝛿𝑗𝓁 + 𝛿𝑖𝓁𝛿𝑗𝑘]. The relaxation function 𝒢 is assumed propor-
tional to the Heaviside step function H (i.e., 𝒢 is of the Heaviside
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type, see Carcione (2015)). Typically, the relaxation function 𝒢 may
be chosen as a Prony series of the form

𝒢 (𝑡) =
[

1 −
𝑛
∑

𝑘=1
𝑔𝑘 (1 − e−𝑡∕𝜏𝑘 )

]

H(𝑡) , (6)

with an arbitrary number 𝑛 of relaxation mechanisms of magnitude 𝑔𝑘
nd characteristic time 𝜏𝑘.

For causal problems where deformation starts at 𝑡 = 0, the elastic
esponse 𝑺e is of the Heaviside type too. Thus, the product rule of
ifferentiation and restriction of the integrals to [0, 𝑡] yields alternative
orms of the convolution products (Fung, 1993; De Pascalis et al.,
014). In the present study, the material is not assumed stress-free at
egative times. We thus keep convolution over R instead, see Eq. (5).

In the incompressible case (2), the stress response 𝑺 includes an
dditional term −𝑝𝑪−1 where 𝑝 is the Lagrange multiplier of the incom-
ressibility constraint — the corresponding Cauchy stress 𝑻 = 𝑭𝑺𝑭 ⊺

ncludes the term −𝑝𝑰 . Moreover, the strain energy function 𝑊 depends
on the invariants 𝐼1, 𝐼2 only, and the elastic response reduces to

e = 2
(

𝑊1 + 𝐼1𝑊2
)

𝑰 − 2𝑊2𝑪 , (7)

here 𝑊𝑖 is shorthand for the partial derivative 𝜕𝑊 ∕𝜕𝐼𝑖 evaluated at
𝐼1, 𝐼2). Equivalent forms to Eq. (7) can be derived by using the Cayley–
amilton theorem, but we do not enter into these considerations here

see De Pascalis et al. (2014)). For sake of consistency with incom-
ressible linear elasticity in the limit of infinitesimal deformations, we
ssume that the relationship 𝜇∕2 = 𝑊1(3, 3) +𝑊2(3, 3) defines the shear
odulus 𝜇 > 0.

To split stresses into deviatoric/isochoric and hydrostatic/
olumetric contributions, Simo (1987) introduced a nearly incom-
ressible theory with internal variables. Integration of the differential
quations governing the evolution of internal variables allows us to
ewrite the constitutive law using hereditary integrals. In the in-
ompressible limit, we thus have (see Eq. (1.17) of Simo (1987))

= −𝑝𝑪−1 + Dev
(

𝒢 ∗ 𝑺̇e
D
)

= −𝑞𝑪−1 + 𝒢 ∗ 𝑺̇e
D = −𝑞𝑪−1 + ∫R

𝒢 (𝑡 − 𝑠)𝑺̇e
D(𝑠)d𝑠 = −𝑞𝑪−1 + ̇𝒢 ∗ 𝑺e

D

(8)

ith 𝒢 defined in Eq. (6), up to a suitable redefinition of the arbitrary
agrange multiplier 𝑝 as 𝑞. Here, we have introduced the notation
e
D = Dev(𝑺e) where Dev(∙) = (∙) − 1

3 (∙ ∶ 𝑪)𝑪−1 denotes the deviatoric
operator in the Lagrangian description (Holzapfel, 2000). Similarly to
Eq. (5), the star operator ∗ denotes the standard convolution product
in time domain, and the elastic response is deduced from Eq. (7).

Let us assume that the material is in an equilibrium state 𝑺e = 𝑺̄e for
egative times, which undergoes continuous perturbations about 𝑡 = 0.
he rate of 𝑺e

D is therefore a causal signal which vanishes at the origin
f times. The expression of the relaxation function (6) in Eq. (8) yields

= −𝑞𝑪−1 + 𝑺e
D −

𝑛
∑

𝑘=1
𝑺v
𝑘 , 𝑻 = −𝑞𝑰 + 𝑻 e

d −
𝑛
∑

𝑘=1
𝑻 v
𝑘 , (9)

here

v
𝑘 = 𝑔𝑘 ∫

𝑡

0

(

1 − e−(𝑡−𝑠)∕𝜏𝑘
)

𝑺̇e
D(𝑠)d𝑠 =

𝑔𝑘
𝜏𝑘 ∫

𝑡

0
e−(𝑡−𝑠)∕𝜏𝑘 𝑺e

D(𝑠)d𝑠 (10)

and 𝑻 v
𝑘 = 𝑭𝑺v

𝑘𝑭
⊺ are memory variables arising in the expression of the

onvolution product (Berjamin et al., 2021). Here, we have introduced
he notation 𝑻 e

d = dev(𝑻 e), where the operator dev(∙) = (∙) − 1
3 tr(∙)𝑰 is

he deviatoric projection in the spatial description (Holzapfel, 2000).
ow, computing the time derivative of the memory variables, we find

hat 𝑺v
𝑘 satisfies the linear evolution equation (Taylor et al., 2009)

𝑺̇v = 𝑔 𝑺e − 𝑺v . (11)
3

𝑘 𝑘 𝑘 D 𝑘
Fig. 1. Acoustoelasticity. Combination of a large static deformation and a small
incremental perturbation.

Thus, the convolution product in the constitutive law (8) is replaced by
a summation of 𝑛 memory variables which satisfy a linear differential
equation. This way, the Fung–Simo QLV theory introduces an additive
decomposition of stress (Berjamin et al., 2021). One notes that this
model is equivalent to the incompressible version of the Fung-type
viscoelastic model described by De Pascalis et al. (2014), as noted
in other related works (Balbi et al., 2018; Berjamin et al., 2021).
Thermodynamic consistency is discussed in the Appendix.

2.3. Small-on-large analysis

For the derivation of the QLV acoustoelasticity equations, we follow
the same steps as in Destrade et al. (2009), referring to Section 2.1 for
definitions and notations. A similar derivation is presented in Parnell
and De Pascalis (2019) without the use of memory variables. The
main idea consists in introducing an intermediate equilibrium config-
uration such that the total finite motion results from an infinitesimal
perturbation of the former. This approach is commonly referred to as
‘incremental’ or ‘small on large’ theory (Ogden, 1984). As shown in
Fig. 1, the solid undergoes a finite static pre-deformation 𝑿 ↦ 𝒙̄(𝑿)
followed by a dynamic infinitesimal deformation 𝒙̄(𝑿) ↦ 𝒙(𝒙̄(𝑿), 𝑡),
which is pushed forward from the reference configuration into a new
one through the intermediate state.

Static deformation. At equilibrium, the deformation is governed by the
balance equation (4) with zero velocity 𝒗̄ = 𝟎. We denote all quantities
associated with the present finite deformation by an overbar. Thus,
the corresponding displacement vector is defined by 𝒖̄ = 𝒙̄ − 𝑿. The
stresses are deduced from the deformation gradients 𝑭̄ = 𝜕𝒙̄∕𝜕𝑿 and
from the constitutive law (9), where the memory variables (11) equal
their equilibrium value 𝑺̄v

𝑘 = 𝑔𝑘𝑺̄e
D, or equivalently 𝑻̄ v

𝑘 = 𝑔𝑘𝑻̄ e
d. Thus,

the material is in its relaxed elastic limit, which satisfies

div 𝑻̄ = 𝟎 with 𝑻̄ = −𝑞𝑰 +

(

1 −
𝑛
∑

𝑘=1
𝑔𝑘

)

𝑻̄ e
d (12)

educed from the constitutive law (9), or equivalently Div 𝑷̄ = 𝟎 with
he stress 𝑷̄ = 𝑻̄ 𝑭̄ −⊺. The divergence operator with the overbar is
btained by spatial differentiation with respect to 𝒙̄. We will see later
n how it relates to div.

ynamic perturbation. Now, a deformation with small displacement
̃
𝒖

s superimposed on the present finite static deformation. We denote
ncremental quantities associated with the infinitesimal deformation by
n undertilde. For instance, the total displacement and position fields
re respectively given by 𝒖 = 𝒖̄ +

̃
𝒖 and 𝒙 = 𝒙̄ +

̃
𝒖, where the explicit

ependence on spatial and temporal coordinates has been omitted for
implicity (see Fig. 1). Using the chain rule, the deformation gradient
ensor is decomposed as

= 𝜕𝒙 𝜕𝒙̄ = (𝑰 +𝑯)𝑭̄ = 𝑭̄ + 𝑭 , 𝑭 = 𝑯𝑭̄ , (13)

𝜕𝒙̄ 𝜕𝑿 ̃ ̃
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where 𝑯 = 𝜕
̃
𝒖∕𝜕𝒙̄ is the incremental displacement gradient tensor in

he pre-deformed configuration (the undertilde is discarded for this
ncremental quantity for sake of parsimony, as there is no ambiguity).
ntroducing the infinitesimal strain tensor 𝜺 such that 2𝜺 = 𝑯 + 𝑯⊺,

we compute the incremental strain tensor
̃
𝑪 = 𝑭̄ ⊺(2𝜺)𝑭̄ , as well as the

incremental invariants (Destrade et al., 2009)

̃
𝐼1 = 2 tr(𝜺𝑩̄) ,

̃
𝐼2 = −2 tr

(

𝜺𝑩̄−1) ,
̃
𝐼3 = 0 , (14)

here the expression for
̃
𝐼2 is deduced from the Cayley–Hamilton

dentity applied to the tensor 𝑩̄.
Let us write the Eulerian equation of motion (4) corresponding to

he total deformation, with the displacement field 𝒖 and the Cauchy
tress tensor 𝑻 ≃ 𝑻̄ +

̃
𝑻 . Since the displacement 𝒖̄ is static, the total

elocity 𝒗 = 𝒙̇ reduces to the material time-derivative of
̃
𝒖. One notes

hat the divergence operators are linked through

iv𝑻 = div
(

𝑻 (𝑰 +𝑯)−⊺
)

≃ div
(

𝑻 − 𝑻𝑯⊺) , (15)

here we have used the Piola identity over the incremental deforma-
ion 𝒙̄ ↦ 𝒙 with deformation gradient tensor 𝑰 + 𝑯 (see Eq. (13)).
onversely, we note that the relationship div𝑻 = div(𝑻 + 𝑻𝑯⊺) is

satisfied at leading order too. These relationships between divergence
operators are of the same type as Eq. (4) (see Sec. 4.3 of Holzapfel
(2000)), up to a redefinition of the reference and deformed states using
the intermediate configuration of Fig. 1.

Since the pre-deformed solid is in a static equilibrium characterised
by Eq. (12), we end up with the incremental equation of motion

𝜌
̃
𝒖̈ = div

̃
𝜮,

̃
𝜮 =

̃
𝑻 − 𝑻̄𝑯⊺, (16)

where the use of div or of div is equivalent at the same order of
pproximation. In fact, the position vector 𝒙 ≃ 𝒙̄ describes a small
erturbation from the pre-deformed state, which is reminiscent of the
inear elastic framework. The incremental incompressibility constraint
educed from Eq. (2) and from the decomposition (13) reads tr𝑯 = 0,
r equivalently div

̃
𝒖 = 0.

Using the constitutive law (9), we derive the expression of the
ncremental Cauchy stress tensor as follows

̃
= −

̃
𝑞𝑰 +

̃
𝑻 e

d −
𝑛
∑

𝑘=1 ̃
𝑻 v
𝑘 , (17)

here
̃
𝑞 is the incremental pressure. The increment of the elastic

esponse is deduced from the definition 𝑻 e = 𝑭𝑺e𝑭 ⊺ by linearising
he products, and a similar computation is performed for the viscous
tresses. Thus, the effective linearised stress of Eq. (16) reads

̃
= −

̃
𝑞𝑰 + 𝑞𝑯⊺ +

(

1 −
𝑛
∑

𝑘=1
𝑔𝑘

)

𝑯𝑻̄ e
d + 𝑭̄

(

̃
𝑺e

D −
𝑛
∑

𝑘=1 ̃
𝑺v
𝑘

)

𝑭̄ ⊺. (18)

The relevant increments deduced from Eq. (7) are given by

̃
𝑺e = 2

(

̃
𝑊1 + ̃

𝐼1𝑊̄2 + 𝐼1 ̃
𝑊2

)

𝑰 − 2
̃
𝑊2𝑪̄ − 2𝑊̄2 ̃

𝑪 , (19)

and thus

̃
𝑺e

D =
̃
𝑺e − 1

3

(

̃
𝑺e ∶ 𝑪̄ + 𝑺̄e ∶

̃
𝑪
)

𝑪̄−1 − 1
3

(

𝑺̄e ∶ 𝑪̄
)

̃
𝑪−1

=
̃
𝑺e − 2

3

(

̃
𝐼1𝑊̄1 + 2

̃
𝐼2𝑊̄2 + 𝐼1 ̃

𝑊1 + 2𝐼2 ̃
𝑊2

)

𝑪̄−1

− 2
3

(

𝐼1𝑊̄1 + 2𝐼2𝑊̄2
)

̃
𝑪−1

(20)

with
̃
𝑪−1 = −𝑭̄ −1(2𝜺)𝑭̄ −⊺. From Eq. (11), we deduce

𝜏𝑘 ̇
̃
𝑺v
𝑘 = 𝑔𝑘 ̃

𝑺e
D −

̃
𝑺v
𝑘 . (21)

In Eqs. (19)–(20), the increment
̃
𝑊𝑖 = 𝑊𝑖 − 𝑊̄𝑖 given by

̃
𝑊𝑖 =

̃ 1
𝑊̄𝑖1 +

̃
𝐼2𝑊̄𝑖2 follows from a truncated Taylor series of the function

𝑊𝑖(𝐼1, 𝐼2) about the equilibrium values (𝐼1, 𝐼2), where 𝑊𝑖𝑗 is shorthand
for 𝜕𝑊𝑖∕𝜕𝐼𝑗 , see Destrade et al. (2009). If we compute the transpose
of Eq. (18), then we remark that the incremental stress tensor

̃
𝜮 is

not preserved. Moreover, substitution of 𝑯 by its transpose does not
necessarily keep

̃
𝜮 invariant, showing that the incremental constitutive
4

law (18) does not exhibit any elementary symmetry in general.
2.4. Dispersive plane waves

We consider incremental harmonic plane waves of the form

̃
𝒖 = 𝒖̂ ei(𝜔𝑡−𝜅𝒏⋅𝒙) , 𝑯 = 𝑯̂ ei(𝜔𝑡−𝜅𝒏⋅𝒙),

̃
𝑞 = 𝑞 ei(𝜔𝑡−𝜅𝒏⋅𝒙), (22)

with complex amplitude 𝒖̂ for the incremental displacement field
̃
𝒖,

and similar notation is used for the harmonic amplitude of other
incremental quantities such as 𝑞, 𝜮̂, 𝑻̂ , etc. Following from the defi-
nition of 𝑯 , the displacement gradient’s harmonic amplitude satisfies
𝑯̂ = −i𝜅 (𝒖̂ ⊗ 𝒏). The exponential space–time dependency involves
the angular frequency 𝜔, the wave number 𝜅, and the imaginary unit
i =

√

−1. This wave is propagating along the 𝒏-direction, where 𝒏 is an
rbitrary unit vector.

Injecting this Ansatz in the incremental incompressibility constraint
ives us the orthogonality condition 𝒖̂ ⋅𝒏 = 0, i.e. the wave corresponds
o a transverse shearing motion. The incremental equation of motion
eads 𝜌𝜔2𝒖̂ = i𝜅𝜮̂𝒏 in harmonic form, where the complex amplitudes

̂ = −𝑞𝑰 + 𝑞𝑯̂⊺ +

(

1 −
𝑛
∑

𝑘=1
𝑔𝑘

)

𝑯̂𝑻̄ e
d +

(

1 −
𝑛
∑

𝑘=1

𝑔𝑘
1 + i𝜔𝜏𝑘

)

𝑭̄ 𝑺̂e
D𝑭̄

⊺ (23)

re deduced from Eqs. (18)–(21). Given the definition of 𝑯 , the dis-
lacement gradient amplitudes 𝑯̂ = −i𝜅 (𝒖̂ ⊗ 𝒏) satisfy the property
̂ ⊺𝒏 = 𝟎 due to the orthogonality condition. Then, scalar multiplication
f the wave equation by the unit vector 𝒏 yields the condition 𝒏⊺𝜮̂𝒏 = 0
rom which the dynamic pressure 𝑞 is deduced, see expression of 𝜮̂ in
q. (23). Given Eq. (23), one observes that the incremental stress 𝜮̂ is
inear in the displacement gradient amplitudes 𝑯̂ . In other words, we
an write a relationship of the form

̂ 𝒏 = [𝑰−𝒏⊗𝒏]
[

𝜮̂ + 𝑞𝑰 − 𝑞𝑯̂⊺]𝒏 where 𝜮̂+𝑞𝑰−𝑞𝑯̂⊺ = A ∶ 𝑯̂ ,

(24)

or some fourth-order instantaneous stiffness tensor A to be determined
n practical cases. In general, this tensor does not present any specific
ymmetry. The first equation of Eq. (24) follows from the property
⊺𝜮̂𝒏 = 0 where 𝒏 is unitary.

Finally, let us introduce the second-order acoustic tensor 𝑸 such that
A ∶ 𝑯̂]𝒏 = −i𝜅𝑸𝒖̂, i.e. whose components are given by 𝑄𝑖𝑗 = 𝐴𝑖𝑝𝑗𝑞𝑛𝑝𝑛𝑞 .
n general, this tensor is complex-valued and not necessarily symmetric.
he incremental wave equation rewrites as an eigenvalue problem of
he form
𝜔2

𝜅2
𝒖̂ = [𝑰 − 𝒏⊗ 𝒏]𝑸[𝑰 − 𝒏⊗ 𝒏] 𝒖̂ (25)

overning nontrivial solutions 𝒖̂ ≠ 𝟎, where we have used Eq. (24) and
he orthogonality condition 𝒖̂⋅𝒏 = 0 (Scott and Hayes, 1985). The above
ispersion relationship links the wave number 𝜅 to the frequency 𝜔.
ssuming that an admissible polarisation vector is known, the dynamic
odulus 𝜌𝜔2∕𝜅2 is then deduced from Eq. (25) by scalar multiplication
ith 𝒖̂. Note in passing that frequency-deformation separability is not

atisfied for general plane waves, i.e. 𝜌𝜔2∕𝜅2 cannot necessarily be
ritten as the product of one function of 𝜔 and one function of

̄ . Parnell and De Pascalis (2019) found that this property was satisfied
or elongated slender beams at long times.

emark. If no pre-deformation is applied (i.e., if 𝑭̄ = 𝑰 and 𝑻̄ = 𝟎),
e note that the incremental stresses satisfy

̃
𝜮 =

̃
𝑻 , see Eq. (16), and

hat the elastic stress 𝑻̄ e
d deduced from Eq. (7) with 𝐼1 = 3 vanishes too.

Using Eqs. (19)–(20), the expression in Eq. (23) reduces to

𝜮̂ = −𝑞⋆𝑰 + 2𝜇

(

1 −
𝑛
∑

𝑘=1

𝑔𝑘
1 + i𝜔𝜏𝑘

)

𝜺̂ (26)

in the absence of pre-deformation, up to an appropriate redefinition of
the dynamic pressure 𝑞 as 𝑞⋆. Here, we have used the fact that the elas-
tic response is consistent with linear elasticity in the infinitesimal strain
limit. One observes that a generalised Maxwell rheology is recovered,
as expected.
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Table 1
Reference values of the material parameters describing a rubber-like solid. The
viscoelastic Mooney–Rivlin parameters for 𝑛 = 1 relaxation mechanism are extracted
from several literature items (Marckmann and Verron, 2006; Ciambella et al., 2010).
𝜌 [kg/m3] C1 [MPa] C2 [kPa] 𝑔 [–] 𝜏 [s]

1.1 × 103 0.228 8.3 0.29 0.31

2.5. Illustration

For illustration purposes, let us consider the propagation of trans-
verse shear waves in an unbounded material undergoing simple ten-
sion/compression in the propagation direction. The material is assumed
to have incompressible Mooney–Rivlin behaviour in the elastic range,
i.e. the strain energy function reads

𝑊 = C1
(

𝐼1 − 3
)

+ C2
(

𝐼2 − 3
)

(27)

here the invariants are defined in Eq. (3). For consistency with linear
lasticity, the material parameters C1 = 𝑊1 and C2 = 𝑊2 are constants
elated to the shear modulus 𝜇 = 2

(

C1 + C2
)

. The neo-Hookean strain
nergy function is recovered when C2 is equal to zero. Viscoelastic be-
aviour with 𝑛 = 1 relaxation mechanism is assumed, with parameters
= 𝜏1 and 𝑔 = 𝑔1 for sake of simplicity.

Physical parameters for soft rubber-like solids can be estimated from
arious literature sources, see summary in Table 1. For the long-time
lastic response, we use the material parameters for incompressible
ooney–Rivlin rubber from Marckmann and Verron (2006) extracted

rom the data by Treloar, i.e. (1 − 𝑔)C1 = 0.162 MPa and (1 − 𝑔)C2 =
.9 kPa. Therefore, the relaxed shear modulus equals 0.336 MPa. Com-
arable results were obtained by Khajehsaeid et al. (2013), with the
umerical values 0.142 and 0.011 MPa for the two long-time Mooney
arameters.

The viscoelastic parameters 𝑔, 𝜏 are inferred from Ciambella et al.
2010), where we have selected the first relaxation mechanism for the
ung model identified through a relaxation test. Thus, the unrelaxed
hear modulus equals 𝜇 = 0.473 MPa. In upcoming computations, the
ass density 𝜌 = 1.1 × 103 kg/m3 of soft rubber is assumed. Therefore,

he shear wave speed 𝑐 =
√

𝜇∕𝜌 takes the numerical value 𝑐 ≈ 21 m∕s
with the values of Table 1.

Now, consider that the material is deformed according to uniaxial
tension–compression along 𝒆3, i.e. the deformation gradient reads 𝑭̄ =
diag

[

𝜆̄𝑖
]

, with the axial stretch 𝜆̄3 = 𝜆̄ and lateral stretches 𝜆̄1 = 𝜆̄2 such
that incompressibility 𝜆̄𝜆̄21 = 1 is enforced. The equilibrium equation
(12) must be satisfied, where the stress 𝑻̄ follows from the elastic
response 𝑻̄ e = 𝑭̄ 𝑺̄e𝑭̄ ⊺ of Eq. (7) with the invariants given by 𝐼1 =
𝜆̄2 + 2∕𝜆̄ and 𝐼2 = 𝜆̄−2 + 2𝜆̄. Thus, the equilibrium stress is a diagonal
tensor whose entries are the principal stresses, and the lateral tractions
are equal. Imposing that the lateral tractions 𝑇̄11 = 𝑇̄22 vanish leads to
the expression of the Lagrange multiplier 𝑞 and of the axial equilibrium
stress 𝑇̄33.

Incremental wave solutions propagating in a direction 𝒏 normal to
the direction of elongation 𝒆3 are considered, for instance 𝒏 = 𝒆1. In
greement with the orthogonality condition, we assume that the wave
s polarised along 𝒆3, so that the displacement gradient tensor 𝑯̂ =
−i𝜅 (𝒖̂⊗ 𝒏) has nonzero components along 𝒆3 ⊗ 𝒆1 only. Since the pre-
deformation is homogeneous (Destrade et al., 2009), the incremental
wave Eq. (16) becomes 𝜌𝜔2𝒖̂ = i𝜅𝑻̂ 𝒏 in harmonic form. Following the
same steps as in the above derivation, the harmonic amplitude of the
incremental Cauchy stress (17) is obtained:

𝑻̂ = −𝑞𝑰 + (1 − 𝑔)
(

𝑯̂𝑻̄ e
d + 𝑻̄ e

d𝑯̂
⊺) +

(

1 −
𝑔

1 + i𝜔𝜏

)

𝑭̄ 𝑺̂e
D𝑭̄

⊺. (28)

Using Eqs. (19)–(20) and the fact that 𝑻̄ e
d is diagonal, multiplication by

then yields

𝑻̂ + 𝑞⋆𝑰
]

𝒏 =
[

A ∶ 𝑯̂
]

𝒏 = −i𝜅𝑸𝒖̂ = −i𝜅𝜇 𝒖̂ (29)
5

𝑥 i
Fig. 2. Acoustoelasticity of transverse waves propagating in the transverse direction
to tensile stretch. Evolution of the coefficients involved in the expression (30) of the
dynamic modulus 𝜇𝑥 in terms of the static stretch 𝜆̄. The horizontal dots mark the
value of the shear modulus 𝜇.

up to a redefinition of the acoustic pressure 𝑞, with the coefficients

𝜇𝑥 = (1 − 𝑔)[𝑇̄ e
d ]11 +

(

1 −
𝑔

1 + i𝜔𝜏

)

𝜇̄v
𝑥 (30)

nd

[𝑇̄ e
d ]11 =

2
3
[(

3𝜆̄−1 − 𝐼1
)

C1 +
(

3𝐼1𝜆̄−1 − 3𝜆̄−2 − 2𝐼2
)

C2
]

,

𝜇̄v
𝑥 = 2

3
[

𝐼1C1 +
(

2𝐼2 − 3𝜆̄
)

C2
]

.
(31)

Here we have also used the expression of the left Cauchy–Green strain
tensor 𝑩̄ = diag

[

𝜆̄2𝑖
]

, and the property 2𝜺̂𝒏 = −i𝜅𝒖̂ following from the
orthogonality condition. Therefore, the instantaneous stiffness tensor
A = 2𝜇𝑥Is is proportional to the fourth-order symmetric identity tensor,
and the acoustic tensor 𝑸 = 𝜇𝑥𝑰 is proportional to identity. Finally, the
dispersion relationship 𝜌𝜔2∕𝜅2 = 𝜇𝑥 for incremental displacements 𝒖̂
polarised along 𝒆3 is obtained.

Fig. 2 represents the evolution of the stiffness coefficients govern-
ing the two terms of Eq. (30) with respect to the pre-stretch 𝜆̄. If
no pre-deformation is applied (𝜆̄ = 1), then the stress component
[𝑇̄ e

d ]11 vanishes, and we recover the same dynamic modulus 𝜌𝜔2∕𝜅2

as deduced from Eq. (26). In the vicinity of the undeformed state,
the coefficient [𝑇̄ e

d ]11 is decreasing with respect to 𝜆̄, whereas 𝜇v
𝑥 has

reached a local minimum (zero slope). Note in passing that frequency-
deformation separability is not satisfied in general, i.e. the dynamic
modulus 𝜇𝑥 cannot be written as the product of one function of 𝜔 and
one function of 𝜆̄.

Dispersion and dissipation properties can be deduced from the
dispersion relationship 𝜌𝜔2∕𝜅2 = 𝜇𝑥, see Carcione (2015) for comple-
ments. Using the above expression of the dynamic modulus 𝜇𝑥, one
deduces the phase velocity

𝜔
Re 𝜅 = ±

√

2 (1 +𝐷2)

1 +
√

1 +𝐷2

√

|Re𝜇𝑥|
𝜌

(32)

and dissipation factor

𝐷 = −
Im(𝜅2)
Re(𝜅2)

=
Im𝜇𝑥
Re𝜇𝑥

= 𝐷0
2𝛺𝛺0

𝛺2 +𝛺2
0

(33)

where 𝛺 = 𝜔𝜏 is a normalised frequency, and

𝐷0 =
𝑔

2𝛺0

𝜇̄v
𝑥

𝜇̄v
𝑥 + (1 − 𝑔)[𝑇̄ e

d ]11
, 𝛺2

0 = (1 − 𝑔)
𝜇̄v
𝑥 + [𝑇̄ e

d ]11
𝜇̄v
𝑥 + (1 − 𝑔)[𝑇̄ e

d ]11
(34)

or any applied stretch 𝜆̄. The frequency evolution of the medium’s
hase velocity and dissipation factor for several levels of pre-
eformation is displayed in Fig. 3. A first look at these curves shows
hat the phase velocity is frequency-dependent (Fig. 3a), i.e. the mate-
ial is dispersive, and that the dissipation factor has a bell-shaped curve

n terms of logarithmic frequencies (Fig. 3b). According to Eq. (33),
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Fig. 3. Dispersive plane waves propagating in the transverse direction to tensile stretch. Evolution of the phase velocity (a) and of the dissipation factor (b) in terms of the
(logarithmic) frequency 𝑓 = 𝜔∕(2𝜋) for the longitudinal stretches 𝜆̄ in {0.6, 0.8,… , 1.4}. Thick red lines mark the undeformed case 𝜆̄ = 1. The dashed line in (b) marks the locus of

aximum dissipation.
a
o
p
𝑅
c
𝑖

f

he dissipation factor reaches its maximum value 𝐷0 at the normalised
requency 𝛺 = 𝛺0.

The thick curve in Fig. 3 marks the undeformed state, where the ten-
ile equilibrium stretch 𝜆̄ equals unity. In this case, the high-frequency
imit of the phase velocity is the shear wave speed 𝑐, and its low-
requency limit equals 𝛺0𝑐 with 𝛺0 =

√

1 − 𝑔. These asymptotes are
arked by horizontal dotted lines in Fig. 3a. The dissipation factor

eaches its maximum value 𝐷0 = 𝑔∕(2𝛺0) ≈ 0.17 at the normalised
frequency 𝛺0. Given the numerical values deduced from Table 1,
the undeformed material is mostly attenuating about the frequency
𝛺0∕(2𝜋𝜏) = 0.43 Hz (vertical line in Fig. 3), i.e. in the low-frequency
ange.

Now, let us consider several levels of applied pre-deformation by
arying 𝜆̄. Fig. 3a shows that the phase velocity decreases monoton-
cally with stretch. In the vicinity of the undeformed state, Eq. (33)
ells us that the maximum dissipation 𝐷0 increases with the pre-stretch
̄, whereas 𝛺0 decreases with increasing pre-stretch. This evolution
s confirmed in Fig. 3b, where the bell-shaped curves flatten with
ecreasing stretch. Moreover, these curves are slightly shifted towards
ecreasing frequency when the stretch is increased, as shows the dashed
urve marking the locus of maximum dissipation. In conclusion, the
longated material’s dissipation occurs at lower frequency and with
ore significant effect than in the compressed material.1

. Application to a pre-stressed phononic crystal

In this section, we consider the periodic structure proposed in Barn-
ell et al. (2016) in view of adapting their study to the viscoelastic

ase. Thus, we follow a similar approach based on Bloch wave analysis
aka. plane-wave expansion method) to study the system’s effective
ynamic response. In particular, the computation of the static pre-
eformation described hereinafter is not original. Nevertheless, the
heory introduced in previous sections suggests that the considera-
ion of viscoelastic dissipation modifies substantially the analysis of
ncremental motions.

As represented in Fig. 4, the phononic crystal at hand consists of a
wo-dimensional periodic structure with square unit cells (the structure
s assumed invariant along the 𝑧-axis). Each unit cell has an embedded

annulus region made of a soft rubber-like material corresponding to
hollow cylinders in three-dimensional space. The inner region of the

1 The opposite tendencies are observed if the incremental waves propagate
n the direction of elongation (not shown here). Indeed, if the material is
longated in a given direction, then it is simultaneously compressed in the
ransverse directions due to the incompressibility property.
6

annuli is filled with an inviscid gas allowing to control the pressure
inside the cylinders, while the outer region consists of another solid
material (host material). All unit cells are submitted to the same static
pre-deformation, resulting from an applied inner pressure combined
with cylinder elongation along 𝑧. This elongation is chosen in such
a way that the outer region is initially undeformed — in other words,
pre-deformation is restricted to the annulus region.

In the present study, the cylinders are assumed to be made of a
viscoelastic Mooney–Rivlin material with 𝑛 = 1 relaxation mechanism,
which reference parameters are given in Table 1. Moreover, we assume
that the host material has the same relaxation function as the cylinders,
i.e. the same parameters 𝑔, 𝜏. In what follows, elastic behaviour is thus
recovered as a special case, namely 𝑔 = 0 or 𝜏 → +∞. Let us first derive
the equations governing incremental wave propagation within a single
unit cell before the full periodic structure is addressed.

3.1. Pre-deformed unit cell

Let us consider the cylindrical coordinate system of a cell (see
Fig. 4), which deforms exclusively in the annulus region 𝑟0 ≤ 𝑟̄ ≤ 𝑟1. In

standard fashion, we introduce the coordinates (𝑟̄, 𝜃̄, 𝑧̄) and (𝑅,𝛩,𝑍)
f a particle in the deformed and undeformed states, respectively (see
icture in Fig. 1). The deformation includes a radial component 𝑟̄ ↦
(𝑟̄) and a vertical component 𝑍 = 𝑧̄∕𝜁 where 𝜁 is constant. The
orresponding deformation gradient tensor reads 𝑭̄ = diag

[

𝜆̄𝑖
]

for
∈ {𝑟, 𝜃, 𝑧}, with the radial stretch 𝜆̄𝑟 = 1∕𝑅′(𝑟̄), angular stretch 𝜆̄𝜃 =

𝑟̄∕𝑅(𝑟̄), and vertical stretch 𝜆̄𝑧 = 𝜁 . The incompressibility constraint (2)
or 𝑭̄ implies

𝑅(𝑟̄)2 = 𝜁 𝑟̄2 + (1 − 𝜁 )𝑟21,
𝑟21 − 𝑅(𝑟0)2

𝑟21
< 𝜁 <

𝑟21
𝑟21 − 𝑟20

, (35)

where we have used the fact that the outer annulus boundary 𝑟1 =
𝑅(𝑟1) is invariant. In Eq. (35), the bounds for the vertical stretch 𝜁
follow from the requirement of (real) achievable positions for the inner
boundary 𝑅(𝑟0) > 0 with 𝑟0 > 0. Thus, imposing the position 𝑅(𝑟0) of the
inner boundary yields the value of the vertical stretch, and vice versa.
The expression of the other stretches 𝜆̄𝑟, 𝜆̄𝜃 in terms of 𝑟̄ then follows
from this boundary condition.

The equilibrium Eq. (12) involves the static stress 𝑻̄ with the elastic
response 𝑻̄ e of Eq. (7). Here, it is more convenient to rewrite the elastic
stress as 𝑻̄ e = (𝜕𝑊̄ ∕𝜕𝑭̄ ) 𝑭̄ ⊺, where the strain energy 𝑊̄ is expressed in
terms of the 𝑟̄-dependent stretches 𝜆̄𝑖 defined above. Thus, the elastic
response 𝑻̄ e = diag

[

𝜆̄𝑖 𝜕𝑊̄ ∕𝜕𝜆̄𝑖
]

is a diagonal tensor, where the partial
derivatives of 𝑊̄ with respect to the stretches are radial functions.
Finally, up to a redefinition of pressure, the equilibrium equations in
cylindrical coordinates tell us that the Lagrange multiplier depends on
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𝑟

𝜇

Fig. 4. Infinite periodic structure from Barnwell et al. (2016), and its square unit cell. Only the inner radius of the annulus region varies with pre-deformation, due to vertical
stretching of the hollow cylinders combined with application of a well-chosen inner pressure.
̄ only, and so does the radial stress component 𝑇̄𝑟𝑟 as well. The latter
is given by

𝑇̄𝑟𝑟(𝑟̄) = −𝑝0 + (1 − 𝑔)∫

𝑟̄

𝑟0

1
𝜚

(

𝜆̄𝜃(𝜚)
𝜕𝑊̄
𝜕𝜆̄𝜃

(𝜚) − 𝜆̄𝑟(𝜚)
𝜕𝑊̄
𝜕𝜆̄𝑟

(𝜚)
)

d𝜚

= −𝑝0 + (1 − 𝑔)
(

C1
𝜁

+ 𝜁C2

)

×

[

ln

(

𝑅(𝑟̄)2∕𝑟̄2

𝑅(𝑟0)2∕𝑟20

)

+
1 − 𝜁
𝜁

(

𝑟21
𝑟̄2

−
𝑟21
𝑟20

)]

,

(36)

where the pressure 𝑇̄𝑟𝑟(𝑟0) = −𝑝0 is imposed at the inner surface of the
annulus region. For a given input pressure 𝑝0, the vertical stretch 𝜁 is
chosen in such a way that the integral term of Eq. (36) equals 𝑝0 at the
radius 𝑟̄ = 𝑟1. Therefore, 𝜁 is solution to a transcendental equation that
can be solved using Newton’s method. This way, the radial traction 𝑇̄𝑟𝑟
vanishes at the outer boundary of the annulus region, which remains
invariant under such a static pre-deformation.

With this pre-deformation, we now consider time-harmonic incre-
mental displacements

̃
𝒖 = 𝒖̂ ei𝜔𝑡 of the form 𝒖̂ = 𝑤(𝑟, 𝜃) 𝒆𝑧, for which

the incompressibility constraint is always satisfied. In cylindrical coor-
dinates, the time-harmonic displacement gradient tensor 𝑯̂ has compo-
nents 𝑤,𝑟 and 𝑤,𝜃∕𝑟 along 𝒆𝑧⊗𝒆𝑟 and 𝒆𝑧⊗𝒆𝜃 , respectively. Incremental
waves are governed by Eq. (16), i.e. −𝜌𝜔2𝒖̂ = div 𝜮̂, where the time-
harmonic incremental stress 𝜮̂ is deduced from Eq. (23), cf. previous
paragraph for the description of the equilibrium state (quantities with
overbar). In cylindrical coordinates, the radial and angular components
make the Lagrange multiplier vanish. The vertical component yields the
harmonic wave equation

−𝜌𝜔2𝑤 = 1
𝑟
𝜕
𝜕𝑟

(

𝑟𝛴̂𝑧𝑟
)

+ 1
𝑟

𝜕
𝜕𝜃

𝛴̂𝑧𝜃 , 𝛴̂𝑧𝑟 = 𝜇𝑟
𝜕𝑤
𝜕𝑟

, 𝛴̂𝑧𝜃 =
𝜇𝜃
𝑟

𝜕𝑤
𝜕𝜃

(37)

with the coefficients

𝜇𝑝 = (1 − 𝑔)[𝑇̄ e
d ]𝑝𝑝 +

(

1 −
𝑔

1 + i𝜔𝜏

)

𝜇̄v
𝑝 , 𝑝 = 𝑟, 𝜃 (38)

where

[𝑇̄ e
d ]𝑝𝑝 =

2
3

[(

3𝜆̄2𝑝 − 𝐼1
)

C1 +
(

3𝐼1𝜆̄2𝑝 − 3𝜆̄4𝑝 − 2𝐼2
)

C2

]

(39)

and

̄v𝑟 = 2
3
[

𝐼1C1 + (2𝐼2 − 3𝜆̄−2𝜃 )C2
]

, 𝜇̄v
𝜃 = 2

3
[

𝐼1C1 + (2𝐼2 − 3𝜆̄−2𝑟 )C2
]

.

(40)

One observes that these expressions have a very similar form to that
in Section 2.5, which follows from the fact that the static deformation
gradient is diagonal. In the relaxed elastic limit 𝜔 → 0, the above
expressions match Eq. (7) of Barnwell et al. (2016), where the above
7

coefficients reduce to 𝜇𝑝 = 2(1 − 𝑔)
(

C1𝜆̄2𝑝 + C2𝜆̄−2𝑧
)

for 𝑝 = 𝑟, 𝜃.
Note however that the unrelaxed elastic limit 𝜔 → +∞ yields dif-
ferent expressions. This observation is consistent with the fact that
a high-frequency incremental perturbation couples both relaxed and
unrelaxed elastic solid limits (in the static pre-deformation and its
dynamic perturbation, respectively).

3.2. Pre-deformed periodic structure

We rely on the plane-wave-expansion method to analyse the band
gap structure of the pre-deformed periodic material described in Fig. 4.
We consider time-harmonic antiplane waves polarised along 𝑧, cor-
responding to incremental displacements

̃
𝒖 = 𝒖̂ ei𝜔𝑡 of the form 𝒖̂ =

𝑤(𝑥, 𝑦) 𝒆𝑧 where 𝜔 is the angular frequency. The motion is governed by
the incremental wave equation −𝜌𝜔2𝒖̂ = div 𝜮̂ with the incremental
stress tensor of Eq. (23), where pre-deformation is described by the
quantities with overbars.

Due to the periodicity of the system, the static pre-deformation
is periodic with period 𝓁 in both directions 𝑥, 𝑦. Following Bloch’s
theorem, we seek wave fields of the form

𝑤(𝒙) = ei𝜿⋅𝒙
(

∑

𝑮
[𝑮] ei𝑮⋅𝒙

)

, (41)

where the Bloch wavevector 𝜿 and reciprocal lattice vectors 𝑮 are
orthogonal to the vertical 𝑧-axis. Reciprocal lattice vectors span the in-
teger combinations of the primitive vectors 𝒃𝑗 =

2𝜋
𝓁
𝒆𝑗 , i.e. we may write

𝑮 = 𝑚𝑗𝒃𝑗 with integer components (𝑚1, 𝑚2) in Z2. Therefore, inside the
parentheses, a 𝓁-periodic function in two dimensions is represented by
its Fourier series with coefficients [𝑮]. In fact, translation of 𝒙 by
any lattice vector 𝑹 defined as an integer combination of the primitive
vectors 𝒂𝑖 = 𝓁𝒆𝑖 keeps the bracketed function invariant. We note that
the relationship 𝒂𝑖 ⋅ 𝒃𝑗 = 2𝜋 𝛿𝑖𝑗 between primitive vectors is satisfied.

We now transform the incremental wave Eq. (37) governing vertical
displacements to Cartesian coordinates using the change of variables
(𝑥, 𝑦) = 𝑟(cos 𝜃, sin 𝜃). Over each unit cell, Eq. (37) rewrites as

−𝜌𝜔2𝑤 = 𝜕
𝜕𝑥

𝛴̂𝑧𝑥 +
𝜕
𝜕𝑦

𝛴̂𝑧𝑦 , (42)

where
[

𝛴̂𝑧𝑥
𝛴̂𝑧𝑦

]

= 1
𝑥2 + 𝑦2

[

𝑥2𝜇𝑟 + 𝑦2𝜇𝜃 𝑥𝑦(𝜇𝑟 − 𝜇𝜃)
𝑥𝑦(𝜇𝑟 − 𝜇𝜃) 𝑦2𝜇𝑟 + 𝑥2𝜇𝜃

] [

𝑤,𝑥
𝑤,𝑦

]

= 𝑨𝒉 (43)

and the vector 𝒉 gathers the displacement gradient components 𝑤,𝑥,
𝑤,𝑦.

Next, the expressions of 𝜌 and 𝑨 are extended to the whole periodic
structure by spatial periodisation, i.e. the coefficients of the wave
Eq. (42) are rewritten as Fourier series

𝜌(𝒙) =
∑

[𝑮] ei𝑮⋅𝒙, 𝑨(𝒙) =
∑

[𝑮] ei𝑮⋅𝒙, (44)

𝑮 𝑮
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which coefficients are given by

[𝑮] = 1
𝓁2 ∫Cell

𝜌(𝒙) e−i𝑮⋅𝒙d𝒙 , [𝑮] = 1
𝓁2 ∫Cell

𝑨(𝒙) e−i𝑮⋅𝒙d𝒙 . (45)

Similarly, the displacement gradient vector 𝒉 has the Fourier coeffi-
ients [𝑮] = i[𝑮] (𝑮 + 𝜿) deduced from the Bloch wave Ansatz
41). Finally, substitution of the Fourier series representations (44) in
q. (42) yields the algebraic problem

𝐊 − 𝜔2𝐌
)

𝐰 = 𝟎 (46)

ith K𝑮′𝑮 = (𝑮 + 𝜿)⊺[𝑮′ −𝑮] (𝑮′ + 𝜿), M𝑮′𝑮 = [𝑮′ −𝑮],

where the vector 𝐰 = ([𝑮])⊺ gathers the lattice Fourier coefficients
of the vertical displacement 𝑤. Here, we have used the convolution
theorem of Fourier series, and the identity 𝛁 ⋅ (𝑨𝒉) = 𝒉⊺𝛁 ⋅𝑨 +𝑨 ∶ 𝛁𝒉

ith 𝑨 = 𝑨⊺ for the Cartesian divergence operator’s product rule in
wo space dimensions.

Up to the notations used in the present study, Eq. (46) matches
xactly Eq. (23) of the study by Barnwell et al. (2016). However, for a
ixed wavevector 𝜿, Eq. (46) can no longer be viewed as a generalised
igenvalue problem for 𝜔2. In fact, according to the expression of
he coefficients 𝜇𝑟, 𝜇𝜃 in Eq. (38), the matrix 𝑨 with lattice Fourier
oefficients [𝑮] is now complex-valued and dependent on the angular
requency 𝜔— and so does the matrix 𝐊 as well. Nevertheless, non-
rivial solutions to Eq. (46) still express the singularity of the matrix
− 𝜔2𝐌, e.g. to be evaluated with respect to 𝜔 = 𝜔(𝜿) at some fixed
avevector 𝜿.2 For any wavevector 𝜿 = 𝜅𝒏 with complex wavenumber
, the absolute phase velocity of Bloch waves deduced from Eq. (46)
quals Re𝜔∕Re 𝜅, while the attenuation in space and time is given by
Im 𝜅 and Im𝜔, respectively.

In the elastic case (𝑔 = 0), the evolution of the dispersion curves
ith applied pre-deformation and selected material parameters is well-
escribed in literature (De Pascalis et al., 2020). In the viscoelastic case
𝑔 ≠ 0), performing the Bloch wave analysis is more involved due to
omplex values and frequency-dependence in Eq. (46). To address these
hallenges, several approaches are adopted in literature, including
irect computational methods (Wang et al., 2015; Krushynska et al.,
016) as well as dedicated algorithms (Zhao and Wei, 2009; Mokhtari
t al., 2019). In the next subsection, we introduce a perturbation
ethod based on the small parameter 𝑔, that does not involve very

ophisticated algorithms — see technical details in Section 3.4. We then
nvestigate separately the influence of 𝑔 and 𝜏 on wave dispersion at
ome applied stretch 𝜁 ≥ 1.

.3. Perturbation theory

When solving the algebraic problem (46) with respect to 𝜔 by means
f a given numerical method, it is often useful to provide an initial
uess for 𝜔. To do so, let us introduce a perturbation method based on
he small parameter 𝑔 to approximate the angular frequency. For this
urpose, we introduce generalised eigenvectors 𝐫 forming a basis of the
ight null space of 𝐊 − 𝜔2𝐌.

We seek solutions to Eq. (46) in the form of power series of 𝑔, i.e. we
et 𝜔 ≃ 𝜔0 + 𝑔𝜔1 and 𝐫 ≃ 𝐫0 + 𝑔𝐫1, where the zeroth-order quantities
0, 𝐫0 correspond to 𝑔 = 0. Similar expansions for 𝐊 and 𝐌 are thus

introduced, where the Hermitian matrix 𝐌 is found to be independent
on 𝑔. As shown in the expression (38)–(43) of 𝑨, the matrices  and
𝐊 can be linearised with respect to 𝑔, leading to perturbations of the
form  ≃ 0+𝑔1 and 𝐊 ≃ 𝐊0+𝑔𝐊1, where the zeroth-order matrices

2 Alternatively, one might seek values of 𝜿 = 𝜿(𝜔) such that the matrix
− 𝜔2𝐌 becomes singular for some fixed value of 𝜔. Both approaches are

sually found to be equivalent (see Andreassen and Jensen (2013) and Li et al.
2021) for instance).
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orresponding to the elastic limit 𝑔 = 0 are Hermitian. The first-order
atrix 𝐊1 has the coefficients
1
𝑮′𝑮 = 𝜿1⊺0[𝑮′ −𝑮] (𝑮′ + 𝜿0) + (𝑮 + 𝜿0)⊺1[𝑮′ −𝑮] (𝑮′ + 𝜿0)

+ (𝑮 + 𝜿0)⊺0[𝑮′ −𝑮]𝜿1
(47)

ollowing from a power-series expansion of the wavevector 𝜿 ≃ 𝜿0+𝑔𝜿1,
here the first-order matrix 1 is dependent on 𝜔0. Injecting this
nsatz in the algebraic problem (46) leads to the conditions

rder 0:
(

𝐊0 − (𝜔0)2𝐌
)

𝐫0 = 𝟎 ,
rder 1:

(

𝐊1 − 2𝜔0𝜔1𝐌
)

𝐫0 +
(

𝐊0 − (𝜔0)2𝐌
)

𝐫1 = 𝟎 ,
(48)

t zeroth order and first order of the small parameter 𝑔.
Now, we left-multiply the second line of Eq. (48) by the vector 𝐫0†

here the dagger symbol denotes the transpose conjugate. At the same
ime, we compute the transpose conjugate of the first line of Eq. (48),
ecalling that 𝐊0 and 𝐌 are Hermitian matrices. Thus, combining both
dentities leads to the following approximate expression of the angular
requency

≃ 𝜔0 + 𝑔𝜔1 = 𝜔0 +
𝑔

2𝜔0
𝐫0†𝐊1𝐫0
𝐫0†𝐌𝐫0

(49)

at first order in 𝑔. One observes that the increment of the angular
frequency is linear with respect to the (presumably small) pertur-
bation 𝑔𝐊1 of the matrix 𝐊. By construction, the truncation error
|𝜔0 + 𝑔𝜔1 − 𝜔| introduced by the first-order perturbation is necessarily
of order 𝑂(𝑔2). Upon division by 𝜔, the same rate of convergence is
btained for the relative error |(𝜔0 + 𝑔𝜔1)∕𝜔 − 1|.

llustration. Let us go back to the example studied in Section 2.5 where
he dispersion relationship takes the form 𝐾 = 𝜌𝜔2 with 𝐾 = 𝜇𝑥𝜅2.

Similarly, we are considering perturbed quantities in terms of the small
parameter 𝑔, where the elastic case corresponds to 𝑔 = 0. Thus, we
eek 𝜔 in the form of a power series in 𝑔, where we have assumed
≃ 𝜅0 + 𝑔𝜅1 and 𝜇𝑥 ≃ 𝜇0

𝑥 + 𝑔𝜇1
𝑥. According to Eq. (30), the zeroth-

rder term of the dynamic modulus 𝜇𝑥 equals 𝜇0
𝑥 = [𝑇̄ e

d ]11 + 𝜇̄v
𝑥, and the

first-order term 𝜇1
𝑥 is an 𝜔0-dependent complex number. We find the

elationship 𝐾0 = 𝜌(𝜔0)2 at order zero, and

≃ 𝜔0 +
𝑔𝐾1

2𝜔0𝜌
with 𝐾1 = 2𝜇0

𝑥𝜅
0𝜅1 + (𝜅0)2𝜇1

𝑥 (50)

at order one. Note the similarity with the case of the phononic crystal
(49).

To evaluate the error introduced by the present first-order approx-
imation, we consider an exact wavenumber 𝜅 that was obtained by
solving the dispersion relationship 𝜌𝜔2∕𝜅2 = 𝜇𝑥 for a given real fre-
uency 𝜔. By setting 𝜅0 = Re 𝜅 and 𝑔𝜅1 = i Im 𝜅, the perturbation (50)
roduces an approximation of the angular frequency 𝜔, introducing a
elative error of order 𝑂(𝑔2). This property is illustrated in Fig. 5a (black
riangle), where an appropriate rate of decay in log–log coordinates
s found for all the applied stretches 𝜆̄ at the frequency of maximum
issipation. Note that the relative error does not exceed ≈ 2% with
he value 𝑔 = 0.29 of Table 1 (vertical dotted line) at the frequency
f maximum dissipation.

Fig. 5b displays the dispersion error introduced by the perturba-
ion method for the value 𝑔 = 0.29 of Table 1. Here, we compare
he dispersion curves of Fig. 3a with the same quantity obtained by
erturbation (50). One observes that the overall evolution is well-
eproduced, and that the perturbation method performs best in the
igh-frequency range. In the present configuration, phase velocities are
lightly overestimated in compression and underestimated in elonga-
ion at the frequency of maximum dissipation (about the vertical line
n Fig. 3b). Computation of the corresponding relative frequency errors
hows that they do not exceed 2% over the frequency range of the
igure.
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Fig. 5. Validation of the perturbation theory (50) where 𝑔 is a small parameter. For a given complex wavenumber related to Fig. 3, the frequency computed using the perturbation
method is compared to its exact value deduced from dispersion analysis. (a) Evolution of the relative frequency error at the frequency 𝑓 = 𝛺0∕(2𝜋𝜏) of maximum dissipation,
where each curve corresponds to a value of stretch 𝜆̄ in {0.6, 0.8,… , 1.4}. (b) Dispersion errors for 𝑔 = 0.29: exact curve against first-order perturbation.
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.4. Results and discussion

We present the results obtained for the phononic crystal in dimen-
ionless form by setting

𝜿̌ = 𝓁𝜿, 𝜔̌ = 𝓁𝜔
𝑐0

, 𝒙̌ = 𝒙
𝓁
, 𝜌̌(𝒙̌) = 𝜌(𝒙)

𝜌0
,

Č𝑘(𝒙̌) =
C𝑘(𝒙)
𝜇0

(𝑘 = 1, 2), 𝜏 =
𝑐0𝜏
𝓁

,
(51)

where 𝓁 is the cell size, and 𝜌0, 𝜇0 = 2(C10 + C20), 𝑐0 =
√

𝜇0∕𝜌0
are mechanical properties of the host material deduced from Table 1
(𝑟̄ > 𝑟1). In the following, 𝑅̌0 = 0.3 and cylindrical inclusions are
thought softer than the host so that the imposed pre-deformation is
achievable (Barnwell et al., 2016; De Pascalis et al., 2020). To this end
we simply assume a uniform softening by setting C11∕C10 = C21∕C20 =
𝜌1∕𝜌0 = 0.1 for the cylinder material (𝑟0 < 𝑟̄ < 𝑟1), while the relaxation
function is the same in both regions (parameters 𝑔, 𝜏 of Table 1).
We neglect the added-mass effect caused by the presence of air in
the cylinder core by setting the mechanical parameters to zero in the
corresponding region (𝑟̄ < 𝑟0).

To avoid any instability that can occur to compressed hollow cylin-
ders (Goriely et al., 2008; De Pascalis et al., 2011) and which might
lead to consequent dramatic change of the periodic structure, the pre-
deformation applied to the cylindrical annuli is of extensional type,
i.e. 𝜁 > 1. Fig. 6 illustrates the effect of the pre-deformation applied to
the periodic material by showing the radial evolution of the incremen-
tal shear moduli in the cylinders at various stretches 𝜁 in the elastic case
(𝑔 = 0). Vertical dotted lines mark the inner radius 𝑟̌0 of the cylinders
(𝑟̌0 = 0.3, 𝑝̌0 ≡ 𝑝0∕𝜇0 = 0 at 𝜁 = 1; 𝑟̌0 ≈ 0.36, 𝑝̌0 ≈ 0.19 at 𝜁 = 1.5; and
̌0 ≈ 0.41, 𝑝̌0 ≈ 0.16 at 𝜁 = 3 according to (35) whilst outer radius is
fixed at 𝑟̌1 = 0.45).

To investigate the effects of viscoelastic dissipation on the dis-
persion properties, we apply the perturbation method described in
Section 3.3, providing a 𝜔̌(𝜿̌)-method for the approximate resolution of
Eq. (46). Upon rescaling (51), we consider a finite number (2𝑁max +
1)2 of reciprocal lattice vectors 𝑮, 𝑮′ where the integer 𝑁max > 0
represents the ‘maximum plane wave number’ (Barnwell et al., 2016).
This step amounts to a truncation of spatial Fourier series at order
𝑁max. Next, the (2𝑁max + 1)2 × (2𝑁max + 1)2 matrices 𝐌, 𝐊 of Eq. (46)
are constructed. In practice, the integrals (45) defining  and  are
computed numerically using left Riemann sums with 40𝑁max points
in each spatial direction — Riemann sums are equivalent to the trape-
zoidal rule since the integrand is periodic. The sum is evaluated using
Matlab’s Fast Fourier Transform algorithm fft2. At order zero in 𝑔,
the elastic case is recovered, and the corresponding modal frequencies
are computed using Matlab’s eig function. Computations involved in
9

t

Fig. 6. Static deformation at imposed stretch 𝜁 . Evolution of the radial and angular
nondimensional incremental stiffnesses at equilibrium in pre-stressed Mooney–Rivlin
cylinders with softness ratio 0.1.

the implementation of the perturbation method (49) are of the same
nature as in the elastic case, thus following similar steps.

Here, we used 𝑁max = 6 Fourier modes. We restricted the study
o real-valued wavevectors such that Im 𝜿̌ = 𝟎 by setting 𝜿1 = 𝟎

for the viscoelastic perturbations, see Eq. (47). In a standard fashion,
normalised wavevectors 𝜿̌ scan the edges of the irreducible Brillouin
zone,3 i.e. 𝜿̌ varies linearly along the path M:(𝜋, 𝜋) → 𝛤 :(0, 0) →

X:(𝜋, 0) → M:(𝜋, 𝜋). Here, we have set 20 points along each edge, and
esults are obtained in a reasonable computational time.

Fig. 7 shows the band diagram for the real and imaginary part of
̌ , where each curve corresponds to a given propagation mode — here
he first two modes are shown. Those curves refer to the pre-stressed
ase 𝜁 = 1.5 while 𝑔 varies as shown in the legend. The blank space
etween consecutive real frequencies corresponds to the first band gap

(Fig. 7a). Remembering that 𝑔 = 0 represents the elastic case (black
solid line), we can observe that the displayed modes shift towards
lower frequencies as 𝑔 is increased (with a roughly linear dependence).
ince the imaginary part of 𝜔̌ is non-negative, a dissipative dynamic
ehaviour is found (Fig. 7b). The figure shows that the temporal
ttenuation increases with 𝑔.

3 The present coordinates of M, 𝛤 , X are used in related literature. Similarly
o Deymier (2013) p. 97, the basis vectors for 𝜿̌ in Barnwell et al. (2016)
hould be understood ‘in units of 2𝜋’, that is 𝐢 = (2𝜋, 0), 𝐣 = (0, 2𝜋). Note the
ypo in Fig. 2 of De Pascalis et al. (2020).
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Fig. 7. Dispersion curves in the phononic crystal for several values of 𝑔 while 𝜏 = 0.31 is kept constant. The stretch 𝜁 = 1.5 is applied to the cylinders, whose stiffness equals 10%
of the host material’s stiffness given in Table 1. (a) Real and (b) imaginary frequency.
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Fig. 8 is similar to Fig. 7, but now 𝜏 is varied while the other
parameters are kept fixed (therefore 𝑔 = 0.29 and 𝜁 = 1.5). We observe
hat Re 𝜔̌ is shifted nonlinearly towards higher frequencies as 𝜏 is
ncreased. The limit 𝜏 → +∞ corresponds to an elastic response, for
hich Im 𝜔̌ → 0. However, it is worth noting that this limit differs

rom the limit 𝑔 → 0, as shown in Eq. (38) and related discussions. The
emporal attenuation in Fig. 8b is evolving in a non-monotonous way
ith respect to 𝜏, a phenomenon that will be discussed later on. The

ame band diagrams were also produced at 𝜁 = 1 (no pre-stress) and
= 3, leading to similar effects as in Figs. 7–8 upon varying 𝑔 and 𝜏.

The estimation of the band gap width is of particular interest for
ave filtering once loss is taken into account (𝑔 > 0). This is measured
ersus both 𝑔 and 𝜏 when all the other parameters are kept constant
s above. The results are summarised in Fig. 9. As shown in Fig. 9a,
he band gap width increases linearly with the parameter 𝑔 in all three
ases (𝜁 = 1, 𝜁 = 1.5 and 𝜁 = 3 as displayed in a common legend). A
on-monotonous evolution is instead observed for the band gap width
ith respect to 𝜏. This nonlinear evolution is all the more marked as

he level of applied pre-deformation is large.
For an unstressed homogeneous medium, the maximum dissipation
= 𝑔∕(2

√

1 − 𝑔) is obtained at the scaled frequency 𝜔̌𝐷 =
√

1 − 𝑔∕𝜏
(see Section 2.4). Clearly, as shown in Fig. 10a, 𝜔̌𝐷 remains within the
band gap bounds 𝜔̌𝐿 < 𝜔̌𝑈 when 𝑔 is varied (we refer to 𝜔̌𝐿 as the

aximum frequency attained along the first mode, while 𝜔̌𝑈 refers to
he minimum frequency attained along the second mode). However, at
he same time, the level of dissipation 𝐷 is increasing with increasing
alues of 𝑔. This observation explains qualitatively why the band gap
idth is increasing with 𝑔 (Fig. 9a), leading to the formulation of the

ollowing empirical conjecture:

Conjecture. With the present configuration, the more dissipation occurs
in a band gap, the larger its width.

Now, let us look at the non-monotonous evolution of the attenuation
nd of the band gap width with respect to 𝜏 (Figs. 8b–9b). As shown
10

n Fig. 10b, maximum dissipation occurs approximately within the t
ange 0.1 ≤ 𝜏 ≤ 0.3. Coherently, Fig. 8b indicates that attenuation is
ery large in this range. However, Fig. 9b shows that the band gaps
re largest around 𝜏 ≈ 0.5. Therefore maximum dissipation in the
omogeneous solid does not exactly entail the largest band gaps in the
hononic crystal. Possibly this mismatch is due to the heterogeneity of
he periodic structure.

In the end, it seems that the above empirical conjecture gives only a
ualitative explanation for the non-monotonous evolution of the band
ap width. In fact, if 𝜏 is very small, then 𝜔̌𝐷 is very large and the
aterial is nearly elastic: almost no dissipation takes place in the

requency range 𝜔̌𝐿 < 𝜔̌ < 𝜔̌𝑈 of the first few propagation modes. In
ontrast, if 𝜏 is very large, then 𝜔̌𝐷 is very small; again, the material is
early elastic in this frequency range of interest (with a different elastic
imit than for 𝜏 → 0). Finally, viscoelastic dissipation really influences
he band gap width when 𝜏 is neither too large nor too small. The above
bservations are reminiscent of Zhao and Wei (2009) who found that

‘the viscoelastic constants of host material affect not only the location
ut also the width of band gaps’’.

For the aim of band gap tuning, the influence of elastic and geo-
etric parameters was already discussed in the literature (De Pascalis

t al., 2020). Above observations highlight the influence of viscoelastic
arameters when one single relaxation mechanism is considered. On
he one hand, we note that the band gap width increases with increas-
ng values of 𝑔. On the other hand, the band gap width increases with
ncreasing values of 𝜏 from 𝜏 ≃ 0 up to a local maximum. If 𝜏 → +∞ is
ncreased further, then the band gap width decreases slowly towards a
orizontal asymptote, i.e. the band gap width becomes less sensitive to
ariations of 𝜏. While the viscoelastic constitutive parameters cannot be
djusted easily in practice, we emphasise that real elastomers are better
escribed by a sequence of relaxation mechanisms (Ciambella et al.,
010). Therefore, one of the numerous relaxation times 𝜏 might be
arge enough for the corresponding relaxation mechanism to contribute

o the increase of the band gap width.
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Fig. 8. Dispersion curves in the phononic crystal for several values of 𝜏 while 𝑔 = 0.29 is kept constant. Same configuration as Fig. 7.
Fig. 9. Band gap width referring to Figs. 7a–8a (black solid line) in terms of 𝑔 or 𝜏 with other parameters kept constant. Other curves display the band gap width obtained for
distinct stretching levels.
4. Conclusion

Phononic crystals are manufactured materials designed for the pur-
pose of controlling sound and vibration based on their tunable geomet-
11

ric and material properties. In the last two decades, numerous research
works have focussed on these materials and their applications in engi-
neering, from electronic devices such as diodes and transistors to noise
control devices (Khelif and Adibi, 2016). Despite increasing interest,
relevant literature on lossy materials subject to large deformations is

rather scarce, to the authors’ present knowledge.
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In summary, the present study addresses (i) the computation of in-
remental stresses in incompressible Fung–Simo solids; (ii) the analysis
f dispersion for infinitesimal waves superimposed on a large static
eformation; (iii) the Bloch-wave analysis for a lossy phononic crystal
ade of pre-stressed cylinders whose instantaneous elastic response is
escribed by a Mooney–Rivlin potential. Key elements are the use of
tress-like memory variables governed by linear evolution equations,
s well as the implementation of a viscoelastic perturbation method.

Given that the present study is quasi-analytical, its full range of
pplication remains quite restricted (small 𝑔, uniform dissipation, low
requency, propagative modes, one relaxation mechanism, etc.). Since
omputational approaches are more versatile, they seem to be a rele-
ant tool for future works in this direction. Global wave attenuation
roperties are described in Krushynska et al. (2016) where the authors
eport ‘‘an increase [of the wave attenuation performance] outside the
and gap in the same way as in homogeneous materials’’ — a similar
bservation is reported in Wang et al. (2015) (not shown here).

Application to other materials could be considered, for instance
iscoelastic materials of differential type (Destrade et al., 2009), com-
ressible solids, phononic crystal plates (Mazzotti et al., 2019), and
ther systems involving slender structures (Amendola et al., 2018).
urther developments could also encompass the study of pre-deformed
omposites (Huang et al., 2014; Galich et al., 2017), topological insula-
ors (Nguyen et al., 2019), as well as periodic media based on electro-
ctive or magneto-active materials (Getz et al., 2017; Karami Moham-
adi et al., 2019). In this context, high-order dynamic homogeni-

ation theories could provide effective models for pre-stressed vis-
oelastic structures valid at moderate frequencies (Hu and Oskay,
017). Another potential direction of research is the study of manufac-
ured phononic crystals with an irregular lattice (Mukhopadhyay et al.,
019).
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Appendix. Thermodynamics

In this section, we present the non-equilibrium thermodynamic
analysis of the present incompressible Fung–Simo theory by following
the steps in Berjamin et al. (2021) (a compressible version of the Simo
model is presented in the corresponding seminal works Simo, 1987).
We introduce the thermodynamic potential

𝛹 = −𝑞(𝐽 − 1) +𝑊 (𝑪̃) − 1
2

𝑛
∑

𝑘=1

(

𝑺v
𝑘 ∶ 𝑪 −𝛷𝑘(𝑺v

𝑘)
)

, (A.1)

hich is Helmholtz’ free energy per unit of reference volume. The de-
ormation tensor with overtilde is the volume-preserving strain tensor
̃ = 𝐽−2∕3𝑪. The functions 𝛷𝑘 are presumably convex potentials to be
determined. With the present definitions, the constitutive law (9) reads
𝑺 = 2 𝜕𝛹∕𝜕𝑪 under the incompressibility constraint (2). If the pressure
𝑝 of Eq. (8) was used instead of its redefinition 𝑞, then the tensor 𝑪
in Eq. (A.1) would have to be substituted by its volume-preserving
version for consistency. Since the derivation is very similar with either
expression, we restrict the presentation to the present one.

Assuming that the memory variables 𝑺v
𝑘 governed by Eq. (11) are

internal variables of state, the dissipation per unit volume is given by
the corresponding formulas (Berjamin et al., 2021)

𝒟 = −
𝑛
∑

𝑘=1

𝜕𝛹
𝜕𝑺v

𝑘
∶ 𝑺̇v

𝑘 =
𝑛
∑

𝑘=1

1
2𝜏𝑘

(

𝑪 −
𝜕𝛷𝑘(𝑺v

𝑘)
𝜕𝑺v

𝑘

)

∶
(

2𝑔𝑘
𝜕𝑊 (𝑪̃)
𝜕𝑪

− 𝑺v
𝑘

)

.

(A.2)
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p
2
𝑊

𝒟

We introduce the Legendre transform 2𝑊𝑘 = 𝑺v
𝑘 ∶ 𝑪v

𝑘 − 𝛷𝑘 of the
otential 𝛷𝑘 such that the relationships 𝑪v

𝑘 = 𝜕𝛷𝑘∕𝜕𝑺v
𝑘 and 𝑺v

𝑘 =
𝜕𝑊𝑘∕𝜕𝑪v

𝑘 are satisfied. As shown in Berjamin et al. (2021), setting
𝑘(⋅) = 𝑔𝑘𝑊 (⋅̃) then yields

=
𝑛
∑

𝑘=1

𝑔𝑘
𝜏𝑘

(

𝑪 − 𝑪v
𝑘
)

∶

(

𝜕𝑊 (𝑪̃)
𝜕𝑪

−
𝜕𝑊 (𝑪̃v

𝑘)
𝜕𝑪v

𝑘

)

. (A.3)

The convexity inequality for 𝑊 entails the thermodynamic consistency
of the Fung–Simo model.
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