14 research outputs found

    Detection Of Snail Hemocyanin In The Whole Hemolymph By Serologically Specific Electron Microscopy

    No full text
    This study demonstrates the applicability of the serologically specific electron microscopy (SSEM) technique in the detection of hemocyanin molecules in the whole hemolymph of the snail, Megalobulimulus ovatus. The results are positive and easily reproducible. The SSEM might be useful as a technique for taxonomic studies of snails as well as to study structural aspects of their hemocyanin molecules. © 1983.66323325Derrick, (1973) Virology, 56, pp. 652-653Derrick, Brlansky, Assay for Viruses and Mycoplasmas Using Serologically Specific Electron Microscopy (1976) Phytopathology, 66, pp. 815-820Brlansky, Derrick, Detection of Seedborne Plant Viruses Using Serologically Specific Electron Microscopy (1979) Phytopathology, 69, pp. 96-100Milne, Luisoni, Rapid Immune Electron Microscopy of Virus Preparations (1977) Methods en Virology, 6, pp. 265-281. , K. Maramorosch, H. Koprovski, Academic Press, New YorkRoberts, Harrison, Detection of potato leafroll and potato mop-top viruses by immunosorbent electron microscopy (1979) Annals of Applied Biology, 93, pp. 289-297Paliwal, Serological Relationships of Barley Yellow Dwarf Virus Isolates1) (1977) Journal of Phytopathology, 94, pp. 8-15Delecolle, Lot, Viroses de l'ail : I. - Mise en évidence et essais de caractérisation par immunoélectromicroscopie d'un complexe de trois virus chez différentes populations d'ail atteintes de mosaïque (1981) Agronomie, 1, pp. 763-770Roberts, Tamada, Harrison, (1980) J. Gen. Virol., 47, pp. 209-213Heirwegh, Borginon, Lontie, (1961) Biochim. Biophys. Acta, 48, pp. 517-526Oliveira, (1975) Summa Phytopath., 1, pp. 61-64Luisoni, Milne, Boccardo, (1975) Virology, 68, pp. 86-96Yanagida, Ahmad-Zadeh, (1970) J. Mol. Biol., 51, pp. 411-42

    Structural And Functional Characterization Of Basic Pla2 Isolated From Crotalus Durissus Terrificus Venom

    No full text
    The venom of Crotalus durissus terrificus was fractionated by reverse-phase HPLC to obtain crotapotins (F5 and F7) and PLA2 (F15, F16, and F17) of high purity. The phospholipases A2 (PLA2s) and crotapotins showed antimicrobial activity against Xanthomonas axonopodis pv. passiflorae, although the unseparated crotoxin did not. The F17 of the PLA 2 also revealed significant anticoagulant activity, althrough for this to occur the presence of Glu 53 and Trp 61 is important. The F17 of the PLA2 showed allosteric behavior in the presence of a synthetic substrate. The amino acid sequence of this PLA2 isoform, determined by automatic sequencing, was HLLQFNKMLKFETRK NAVPFYAFGCYCGWGGQRRPKDATDRCCFVHDCCYEKVTKCNTKWDFYRYSLKSGY ITCGKGTWCKEQICECDRVAAECLRRSLSTYKNEYMFYPDSRCREPSETC. Analysis showed that the sequence of this PLA2 isoform differed slightly from the amino acid sequence of the basic crotoxin subunit reported in the literature. The homology with other crotalid PLA2 cited in the lit-erature varied from 60% to 90%. The pL was estimated to be 8.15, and the calculated molecular weight was 14664.14 as determined by Tricine SDS-PAGE, two-dimensional electrophoresis, and MALDI-TOFF. These results also suggested that the enzymatic activity plays an important role in the bactericidal effect of the F17 PLA2 as well as that of anticoagulation, although other regions of the molecule may also be involved in this biological activity. © 2002 Plenum Publishing Corporation.213161168Aird, S.D., Kaiser, I.I., (1985) Biochemistry, 24, pp. 7054-7058Aird, S.D., Kruggel, W.G., Kaiser, I.I., (1985) Toxicon, 28, pp. 669-673Anderson, N.L., Anderson, N.G., (1991) Electrophoresis, 12, pp. 883-906Beghini, D.G., Toyama, M.H., Hyslop, S., Sodek, L., Novello, J.C., Marangoni, S., (2000) J. Prot. Chem., 19, pp. 603-607Breithaupt, H., (1976) Toxicon, 14, pp. 221-233Carredano, B., Westerlind, B., Persson, M., Saareinen, S., Ramaswamy, D., Eaker, H., Eklund, M.W., (1998) Toxicon, 36, pp. 75-92Cho, W., Kezdy, F.J., (1991) Methods Enzymol., 23, pp. 75-79Faure, G., Choumet, V., Bouchier, C., Camoin, L., Guillaume, J.L., Monegier, B., Vuilhorgne, M., Bon, C., (1994) Eur. J. Biochem., 223, pp. 161-164Faure, G., Guillaume, J.L., Camoin, L., Saliou, B., Bon, C., (1991) Biochemistry, 30, pp. 8074-8083Gutierrez, J.M., Lomonte, B., (1995) Toxicon., 33, pp. 1405-1424Habermann, E., Breithaupt, H., (1978) Toxicon., 16, pp. 19-30Hendon, R.A., Fraenkel-Conrat, H., (1976) Toxicon., 14, pp. 283-289Holzer, M., Mackessy, S.P., (1996) Toxicon., 34, pp. 1149-1155Kini, R.M., Evans, H.J., (1989) Toxicon., 27, pp. 613-635Kini, R.M., Evans, H.J., (1987) J. Biol. Chem., 262, pp. 14402-14407Lambeau, G., Ancian, P., Nicolas, J.P., Cupillard, L., Zvaritch, E., Lazdunski, M., (1996) Seances Soc. Biol. Fil., 190, pp. 425-435Lomonte, B., Moreno, E., Tarkowski, A., Hanson, L.A., Maccarana, M., (1994) J. Biol. Chem., 269, pp. 29867-29873Paramo, L., Lomonte, B., Pizarro-Cerda, J., Bengoechea, J.A., Gorvel, J.P., Moreno, E., (1998) Eur. J. Biochem., 253, pp. 452-461Pieterson, W.A., Volwerk, J.J., Haas, G.H., (1974) Biochemistry, 13, pp. 1439-1445Rubsamen, K., Breithaupt, H., Habermann, E., (1971) Arch. Pharmacol., 270, pp. 274-288Schagger, H., Von Jagow, G., (1987) Anal. Biochem., 166, pp. 368-379Selistre De Araujo, H.S., White, S.P., Ownby, C.L., (1996) Arch. Biochem. Biophys., 326, pp. 21-30Shiomi, K.A., Kazama, A., Shimakura, K., Nagashima, Y., (1998) Toxicon, 36, pp. 589-599Soares, A.M., Andrião-Escaso, S.H., Bortoleto, R.K., Rodrigues-Simioni, L., Arni, R.K., Ward, R.J., Gutierrez, J.M., Giglio, J.R., (2001) Arch. Biochem. Biophys., 387, pp. 188-196Toyama, M.H., Soares, A.M., Wen-Hwa, L., Polikarpov, I., Giglio, J.R., Marangoni, S., (2000) Biochimie, 82, pp. 245-250Verheij, H.M., Boffa, M.C., Rothen, C., Bryckaert, M.C., Verger, R., De Hass, G.H., (1980) Eur. J. Biochem., 112, pp. 25-32Zhao, K., Zhou, Y., Lin, Z., (2000) Toxicon., 38, pp. 901-91

    Cytotoxin Production In Phytopathogenic And Entomopathogenic Serratia Marcescens

    No full text
    In this work, culture filtrates of entomopathogenic and phytopathogenic Serratia marcescens strains induced cytotoxic effects on CHO, Vero and HEp-2 cell lines. Morphological changes on sensitive cells were characterized by cell rounding and detachment as soon as 30 min of incubation, culminating in cell death after 24 h. The cytotoxic effect was completely neutralized by specific antiserum indicating that occur antigenic similarity among cytotoxins produced by these strains. The toxicity assays on plants showed that the culture supernatants did not provoke any visible morphological change and did not affect their growth. By contrast, the plants treated with bacterial suspension showed disease symptom, such as shriveling and decay of stores bulbus in onion and lettuce plantlets. In conclusion, this study show that phytopathogenic and entomopathogenic S. marcescens may produce a cytototoxin similar to that produced by clinical isolates and it is toxic to different mammalian cell lines. These results are especially important for studies involving this bacterium as biological control agent.434165170Beriam, L.O.S., Siigaglia, C., Rodrigues Neto, J., Serratia marcescens associada a podridão de cebola armazenada (1990) Fitopatol. Bras., 18, p. 296Campbell, J.R., Diacovo, T., Baker, C.J., Serratia marcescens meningitis in neonates (1992) Ped. Infect. Dis. J., 11, pp. 881-886Carbonell, G.V., Alfieri, A.F., Alfieri, A.A., Vidotto, M.C., Levy, C.E., Darini, A.L.C., Yanaguita, R.M., Detection of cytotoxic activity on Vero cells in clinical isolates of Serratia marcescens (1997) Braz. J. Med. Biol. Res., 30, pp. 1291-1298Carbonell, G.V., Della Colleta, H.H.M., Yano, T., Darini, A.L.C., Levy, C.E., Fonseca, B.A.L., Clinical relevance and virulence factors of pigmented S. marcescens (2000) FEMS Immun. Med. Microbiol., 28, pp. 143-149Carbonell, G.V., Fonseca, B.A.L., Figueiredo, L.T.M., Darini, A.L.C., Yanaguita, R.M., Culture conditions affect cytotoxin production by Serratia marcescens (1996) FEMS Immun. Med. Microbiol., 16, pp. 299-307Finlay, B.B., Falkow, S., Common themes in microbial pathogenicity (1989) Microbiol. Rev., 53, pp. 210-230Grimont, P.A.D., Grimont, F., Lysenko, O., Species and biotype identification of Serratia strains associated with insects (1979) Curr. Microbiol., 2, pp. 139-142Ito, M.F., Paradela Filho, O., Rodrigues Neto, J., Beriam, L.O.S., Longo, R.S., Santos, J.M., Ocorrência de Serratia marcescens Bizio sobre lagartas de Heliothis virescens (Fabr.) (1996) Bragantia, 55 (2), pp. 289-292Kagka, M., Lysenko, O., Chaloupka, J., Exocellular proteases of Serratia marcescens and their toxicity to larvae of Galleria mellonella (1976) Folia Microbiol, 21, pp. 465-473Lysenko, O., Chitinase of Serratia marcescens and its toxicity to insects (1976) J. Invertebr. Pathol., 27, pp. 385-386Meltz, D.J., Grieco, M.H., Characteristics of Serratia marcescens pneumonia (1973) Arch. Int. Med., 132, pp. 359-364Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue culture (1962) Physiol. Plant., 5, pp. 473-497Nakashima, A.K., McCarthy, M.A., Martone, W.J., Anderson, R.L., Epidemic arthritis caused by Serratia marcescens and associated with a benzalkonium chloride antiseptic (1987) J. Clin. Microbiol., 25, p. 1014Okuda, T., Endo, N., Osada, Y., Outbreak of nosocomial urinary tract infections caused by Serratia marcescens (1981) J. Clin. Microbiol., 20, pp. 691-695Parreira, V.R., Yano, T., Cytotoxin produced by Escherichia coli isolated from chickens with swollen head syndrome (SHS) (1998) Vet. Microbiol., 62, pp. 111-119Thelestam, M., Florin, I., Assay of cytopathogenic toxins in cultured cells (1994) Methods Enzymol., 235, pp. 679-690Volkow-Fernández, P., Léon-Rosales, S.P., Sifuentes-Osornio, J., Calva-Mercado, J.J., Ruiz-Palacios, G.M., Cérbon, Ma., Epidemia de bacteremias primarias por una cepa endémica de Serratia marcescens en una unidad de terapia intensiva (1993) Salud Pública de México, 35, pp. 440-44

    Biological And Structural Characterization Of A New Pla 2 From The Crotalus Durissus Collilineatus Venom

    No full text
    In the present article we report on the biological characterization and amino acid sequence of a new basic Phospholipases A 2 (PLA 2) isolated from the Crotalus durissus collilineatus venom (Cdcolli F6), which showed the presence of 122 amino acid residues with a pI value of 8.3, molecular mass of 14 kDa and revealed an amino acid sequence identity of 80 with crotalic PLA 2s such as Mojave B, Cdt F15, and CROATOX. This homology, however, dropped to 50 if compared to other sources of PLA 2s such as from the Bothrops snake venom. Also, this PLA 2 induced myonecrosis, although this effect was lower than that of BthTx-I or whole crotoxin and it was able to induce a strong blockage effect on the chick biventer neuromuscular preparation, independently of the presence of the acid subunid (crotapotin). The neurotoxic effect was strongly reduced by pre-incubation with heparin or with anhydrous acetic acid and q-BPB showed a similar reduction. The q-BPB did not reduce significantly the myotoxic activity induced by the PLA 2, but the anhydrous acetic acid treatment and the pre-incu-bation of PLA 2 with heparin reduced significantly its effects. This protein showed a strong antimicrobial activity against Xanthomonas axonopodis passiflorae (Gram-negative), which was drastically reduced by incubation of this PLA 2 with q-BPB, but this effect was marginally reduced after treatment with anhydrous acetic acid. Our findings here allow to speculate that basic amino acid residues on the C-terminal and molecular regions near catalytic site regions such as Calcium binding loop or b-wing region may be involved in the binding of this PLA 2 to the molecular receptor to induce the neurotoxic effect. The bactericidal effect, however, was completely dependent on the enzymatic activity of this protein. © 2005 Springer Science+Business Media, Inc.242103112Aguiar, A.S., Alves, C.R., Melgarejo, A., Giovanni-De-Simone, S., (1996) Toxicon, 34, pp. 555-565Babu, A.S., Gowda, T.V., (1994) Toxicon, 32, pp. 749-752Bon, C., Changeux, J.P., Jeng, T.W., Fraenkel-Conrat, H., (1979) Eur. J. Biochem., 99, pp. 471-481Breithaupt, H., (1976) Toxicon, 14, pp. 221-233Condrea, E., Fletcher, J.E., Rapuano, B.E., Yang, C.C., Rosenberg, P., (1981) Toxicon, 19, pp. 705-720Dennis, E.A., (1997) Trends Biochem. Sci., 22, pp. 1-12Faure, G., Bon, C., (1988) Biochemistry, 27, pp. 730-738Fuentes, L., Hernandez, M., Nieto, M.L., Sanchez-Crespo, M., (2002) FEBS Lett., 531, pp. 7-11Gowda, T.V., Middlebrook, J.L., (1994) Toxicon, 32, pp. 955-964Habermann, E., Breithaupt, H., (1978) Toxicon, 16, pp. 19-30Holzer, M., MacKessy, S.P., (1996) Toxicon, 34, pp. 1149-1155Kudo, I., Murakami, M., (2002) Prostag. Oth. Lipid Mediat., 68, pp. 3-58. , 69Lambeau, G., Lazdunski, M., (1999) TIPS, 20, pp. 162-170Landucci, E.C., Condino-Neto, A., Perez, A.C., Hyslop, S., Corrado, A.P., Novello, J.C., Marangoni, S., Denucci, G., (1994) Toxicon, 32, pp. 217-226Lomonte, B., Angulo, Y., Calderon, L., (2003) Toxicon, 42, pp. 885-901Murakami, M., Kudo, I., (2002) J. Biochem (Tokyo), 131, pp. 285-292Oliveira, D.G., Toyama, M.H., Novello, J.C., Beriam, L.O., Marangoni, S., (2002) J. Protein Chem, 21, pp. 161-168Prijatelj, P., Sribar, J., Ivanovski, G., Krizaj, I., Gubensek, F., Pungercar, J., (2003) Eur. J. Biochem., 270, pp. 3018-3025Schagger, H., Von Jagow, G., (1987) Anal. Biochem., 166, pp. 368-379Scott, D.L., Achari, A., Vidal, J.C., Sigler, P.B., (1992) J. Biol. Chem., 267, pp. 22645-22657Soares, A.M., Marcussi, S., Stabeli, R.G., Franca, S.C., Giglio, J.R., Ward, R.J., Arantes, E.C., (2003) Biochem. Biophys. Res. Commun., 302, pp. 193-200Soares, A.M., Andrião-Escaso, S.H., Angulo, Y., Lomonte, B., Gutierrez, J.M., Marangoni, S., Toyama, M.H., Giglio, J.R., (2000) Arch. Biochem. Biophys., 373, pp. 7-15Toyama, M.H., Costa, P.D., Novello, J.C., Oliveira, B., Giglio, J.R., Cruz-Höfling, M.A., Marangoni, S., (1999) J. Protein Chem, 18, pp. 371-378Toyama, M.H., Deoliveira, D.G., Beriam, L.O., Novello, J.C., Rodrigues-Simioni, L., Marangoni, S., (2003) Toxicon, 41, pp. 1033-1038Verheij, H.M., Volwerk, J.J., Jansen, E.H., Puyk, W.C., Dijkstra, B.W., Drenth, J., De Haas, G.H., (1980) Biochemistry, 19, pp. 743-750Yang, C.C., (1997) Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism, pp. 185-204. , Kini, R. M. (ed.), Wiley, Chichester U

    Structural, Enzymatic And Biological Properties Of New Pla2 Isoform From Crotalus Durissus Terrificus Venom

    No full text
    We isolated a new PLA2 from the Crotalus durissus terrificus venom that designated F15, which showed allosteric behavior with a V max of 8.5nmol/min/mg and a Km of 38.5 mM. The incubated heparin salt of this isolated F15 act a positive allosteric effector by increasing the Vmax to 10.2nmol/min/mg, with decreasing the V max value to 20.5 mM. The crotapotin, on the other hand acts as a negative allosteric effector by increasing the Vmax values to 58.4 mM. F15also showed high calcium dependence for its catalysis similar to that found for other PLA2 enzymes isolated from these snake venoms. The replacement of calcium by other divalent ions such Mg2+, Mn 2+, Cd2+, Sn2+ and Cu2+ resulted in lower enzymatic activity. The optimum pH and temperature for the enzyme was 8.5 and 18 °C, respectively. F15 alone showed moderate neurotoxic activity in isolated mouse phrenic nerve diaphragm in comparison to other strong myotoxic PLA2 such as bothropstoxin-I (BThtx-I), but this activity was highly neurotoxic in a chick biventrer cervis preparation, whereas BthTx-I did not reveal this high neurotoxicity. This new protein showed a high bactericidal effect against both Gram-negative and Gram-positive bacterial strains. F15 contained 122 amino acid residues, with a primary structure of: HLLQFNKMIKFETRKNAVPFYAFYGCYCGWGGQRRPKDATDRCCFVHDCCYGKLTKCNTKWDIYRYSLKSGYIT CGKGTWCKEQICECDRVAAECLRRSLSTYKNEYMFYPKSRCRRPSETC. Its molecular mass and isoeletric point were 14.5 kDa and 8.85, both estimated by two dimensional electrophoresis. The amino acid sequence of the F15 revealed high sequence homology with F16 and F17. F15 and the other PLA2s revealed highly conserved amino acid sequences principally for calcium binding loop and active site helix. F15 also showed a high homology with the lysine-rich region of myotoxic PLA2. © 2003 Elsevier Science Ltd. All rights reserved.41810331038Beghini, D.G., Toyama, M.H., Hyslop, S., Sodek, L., Novello, J.C., Marangoni, S., Enzymatic characterization of a novel phospholipase A2 from Crotalus durissus cascavella rattlesnake (maracambóia) venom (2000) J. Protein Chem., 19, pp. 603-607Bon, C., Changeux, J.P., Jeng, T.W., Fraenkel-Conrat, H., Postsynaptic effects of crotoxin and of its isolated subunits (1979) Eur. J. Biochem., 99, pp. 471-481Breithaupt, H., Enzymatic characteristics of Crotalus phospholipase A2 and the crotoxin complex (1976) Toxicon, 14, pp. 221-233Bülbring, E., Observation on the isolated phrenic nerve diaphragm preparation of the rat (1946) Br. J. Pharmacol., 1, pp. 38-61Gambero, A., Landucci, E.C.T., Toyama, M.H., Marangoni, S., Giglio, J.R., Nader, H.B., Dietrich, C.P., Antunes, E., Human neutrophil migration in vitro induced by secretory Phospholipases A2: Role of cell surface glycosaminoglycans (2002) Biochem. Pharmacol., 63, pp. 65-72Ginsborg, B.L., Warriner, J., The isolated chick biventer nerve muscle preparation (1960) Br. J. Pharmacol., 15, pp. 410-421Habermann, E., Breithaupt, H., The crotoxin complex - An example of biochemical and pharmacological protein complementation (1978) Toxicon, 16, pp. 19-30Holzer, M., Mackessy, S.P., An aqueous endpoint assay of snake venom phospholipase A2 (1996) Toxicon, 34, pp. 1149-1155Lee, W.-H., Marangoni, S., Toyama, M.H., Da Silva Giotto, M.T., Polikarpov, I., Garrat, R.C., The structural basis for catalytic inactivity in Lys49 phospholipase A2 - A hypothesis: The crystal structure of Piratoxin II complexed to fatty acid (2001) J. Biochem., 40, pp. 28-36Oliveira, D.G., Toyama, M.H., Novello, J.C., Beliam, L.O.S., Marangoni, S., Biochemical and biological characterization of basic PLA2 isoform from Crotalus durissus terrificus venom (2001) J. Protein Chem., 21 (3), pp. 131-136Pieterson, W.A., Volwerk, J.J., De Haas, G.H., Interaction of phospholipase A2 and its zymogen with divalent metal ions (1974) Biochemistry, 13 (7), pp. 14-39Soares, A.M., Andrião-Escaso, S.H., Angulo, Y., Lomonte, B., Gutierrez, J.M., Marangoni, S., Toyama, M.H., Giglio, J.R., Structural and funtional characterization of myotoxin I, a Lys phospholipase A2 homologue form Bothrops moojeni (Caissaca) snake venom (2000) Arch. Biochem. Biophys., 373, pp. 7-15Toyama, M.H., Soares, A.M., Wen-Hwa, L., Polikarpov, I., Giglio, J.R., Marangoni, S., Amino acid sequence of piratoxin-II, a myotoxic lys49 phospholipase A2 homologue from Bothrops pirajai venom (2000) Biochimie, 82, pp. 245-250Toyama, M.H., Soares, A.M., Andrião-Escaso, S.H., Novello, J.C., Oliveira, B., Giglio, J.R., Fontes, M.R.M., Marangoni, S., Comparative biochemical studies of myotoxic phospholipase A2 from Bothrops venom (2001) Protein Peptide Lett., 8, pp. 179-78

    Effects Of Morin On Snake Venom Phospholipase A2 (pla 2)

    No full text
    Flavonoids are potent anti-inflammatory compounds isolated from several plant extracts, and have been used experimentally against inflammatory processes. In this work, a PLA2 isolated from the Crotalus durissus cascavella venom and rat paw oedema were used as a model to study the effect of flavonoids on PLA2. We observed that a treatment of PLA2 with morin induces several modifications in the aromatic amino acids, with accompanying changes in its amino acid composition. In addition, results from circular dichroism spectroscopy and UV scanning revealed important structural modifications. Concomitantly, a considerable decrease in the enzymatic and antibacterial activities was observed, even though anti-inflammatory and neurotoxic activities were not affected. These apparent controversial results may be an indication that PLA2 possess a second pharmacological site which does not affect or depend on the enzymatic activity. © 2005 Elsevier Ltd. All rights reserved.467751758Bors, W., Heller, W., Michel, C., Saran, M., Flavonoids as anti-oxidants: Determination of radical-scavenging efficiencies (1990) Method. Enzymol., 186, pp. 343-355Cao, G., Verdon, C., Wu, A.H.B., Wang, H., Prior RL-Automated oxygen radical absorbance capacity assay using the COBAS FARA II (1995) Clin. Chem., 41, pp. 1738-1744Cao, G., Sofie, E., Prior, R.L., Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships (1997) Free Radic. Biol. Med., 22, pp. 749-760Chandra, V., Jasti, J., Kaur, P., Betzel, C., Srinivasan, A., Singh, T.P., First structural evidence of a specific inhibition of phospholipase A2 by α-Tocopherol (Vitamin E) and its implication in inflammation: Crystal structure of the complex formed between phospholipase A2 and α-Tocopherol at 1.8 Å resolution (2002) J. Mol. Biol., 320, pp. 215-222Di Carlo, G., Mascolo, N., Izzo, A.A., Capasso, F., Flavonoids: Old and new aspects of class of natural therapeutic drugs (1999) Life Sci., 65, pp. 337-353Fang, S.-H., Hou, Y.-C., Chang, W.-C., Hsiu, S.-L., Lee Chao, P.-D., Chiang, B.-L., Morin sulfates/ glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock (2003) Life Sci., 74 (6), pp. 743-756Fawzy, A.A., Vishwanath, B.S., Franson, R.C., Inhibition of human non-pancreatic phospholipase A2 by retinoids and flavonoids. Mechanism of action (1988) Agents Actions, 25 (3-4), pp. 394-400Gil, B., Sanz, J., Terencio, M.C., Gunasegaran, R., Payá, M., Alcazar, M.J., Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity (1997) Biochem. Pharmacol., 53, pp. 733-743Ginsborg, B.L., Warriner, J., The isolated chick biventer cervicis nerve-muscle preparation (1960) Br. Pharm. Chemother., 15, pp. 410-421Harborne, J.B., (1988) The Flavonoids: Advances in Research, , Chapman & Hall LondonHodnick, W.F., Duval, D.L., Pardini, R.S., Inhibition of mithocondrial respiration and cyaned stimulated generation of reactive oxygen species by selected flavonoids (1994) Biochem. Pharmacol., 47 (3), pp. 573-580Holzer, M., MacKessy, S.P., An aqueous endpoint assay of snake venom phospholipase A2 (1996) Toxicon, 34 (10), pp. 1149-1155Kitagawa, S., Sakamoto, H., Tano, H., Inhibitory effect of flavonoids on free radical-induced hemolysis and ther oxidative effect on hemoglobin (2004) Chem. Pharm. Bull., 52 (8), pp. 999-1001Koduri, R.S., Grönrooss, J.O., Laine, V.J.O., Calvez, C.L., Lambeau, G., Nevelainen, T.J., Gelb, M.H., Bactericidal properties of human and murine groups I, II, V, X and XII secreted phospholipases A2 (2002) J. Biol. Chem., 277 (8), pp. 5849-5857Lindahl, M., Tagesson, C., Flavonoids as phospholipase A2 inhibitors: Importance of their structure for selective inhibition of group II phospholipase A2 (1997) Inflammation, 21 (3), pp. 347-356Middleton Jr., E., Drzewiecki, G., Flavonoid inhibition of human basophile histamine release stimulated by various agents (1984) Biochem. Pharmacol., 33, pp. 3333-3338Murakami, M., Shimbara, S., Kambe, T., Kuwata, H., Winstead, M.V., Tishifield, J.A., Kudo, I., The functions of five distinct mammalian phospholipase A2s in regulating arachidonic acid release (1998) J. Biol. Chem., 273 (23), pp. 14411-14423Rice-Evans, C.A., Miller, N.J., Paganga, G., Structure antioxidant activity relationships of flavonoids and phenolic acids (1996) Free Radic. Biol. Med., 20, pp. 933-956Rotelli, A.E., Guardia, T., Juarez, A.O., De La Rocha, N.E., Pelzer, L.E., Comparative study of flavonoids in experimental models of inflammation (2003) Pharmacol. Res., 48, pp. 601-606Schagger, H., Von Jagow, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa (1987) Anal. Biochem., 166 (2), pp. 368-379Takeda, A.A., Dos Santos, J.I., Marcussi, S., Silveira, L.B., Soares, A.M., Fontes, M.R., Crystallization and preliminary X-ray diffraction analysis of an acidic phospholipase A(2) complexed with p-bromophenacyl bromide and alpha-tocopherol inhibitors at 1.9- and 1.45-A resolution (2004) Biochim. Biophys. Acta., (1-2), pp. 281-284Teixeira, C.F., Landucci, E.C., Antunes, E., Chacur, M., Cury, Y., Inflammatory effects of snake venom myotoxic phospholipases A2 (2003) Toxicon, 42 (8), pp. 947-962Toyama, M.H., De Oliveira, D.G., Beriam, L.O., Novello, J.C., Rodrigues-Simioni, L., Marangoni, S., Structural, enzymatic and biological properties of new PLA(2) isoform from Crotalus durissus terrificus venom (2003) Toxicon, 41 (8), pp. 1033-1038Valentin, E., Lambeau, G., Increasing molecular diversity of secreted phospholipases A2 and their receptor and binding proteins (2000) Biochim. Biophys. Acta, 1488, pp. 59-70Vishwanath, B.S., Fawzy, A.A., Franson, R.C., Edema-inducing activity of phospholipase A2 purified from synovial fluid and inhibition by aristolochic acid (1988) Inflammation, 12 (6), pp. 549-561Williams, C.N., Honet, J.R.S., Harborne, J.B., Greenham, J., Eeagles, J.A., Biologically active lipophilic flavonols from Tanacetum parthenium (1995) Phytochemistry, 38, pp. 267-270Xu, H., Ziegelin, G., Schroder, W., Frank, J., Ayora, S., Alonso, J.C., Lanka, E., Saenger, W., Flavones inhibit the hexameric replicative helicase RepA (2001) Nucleic Acids Res., 29 (24), pp. 5058-5066Zhao, H., Tang, L., Wang, X.-Q., Zhou, Y., Lin, Z., Structural of a snake venom phospholipase A2 modified by p-Bromophenacyl bromide (1998) Toxicon, 36 (6), pp. 875-88

    Gama de hospedeiros e reação de genótipos de tomateiro a Pseudomonas cichorii Host range and genotypes reaction to Pseudomonas cichorii

    No full text
    Em 2005, foi constatada em dois campos comerciais de tomate no Estado de São Paulo, a ocorrência da queima bacteriana, causada por Pseudomonas cichorii. Em vista disso, foram desenvolvidos estudos visando a determinação da gama de hospedeiros de isolados de Pseudomonas cichorii (IBSBF 2309 e IBSBF 2323), obtidos de tomateiro, provenientes de campos comerciais localizados nos municípios de Bragança Paulista e Mogi Guaçú, SP. Plantas de abobrinha, alface, beldroega, berinjela, beterraba, cenoura, couvebrócolo, datura, fumo, girassol, jiló, melão, pepino, petúnia, pimentão, rabanete, repolho, rúcula, salsa e tomateiro foram inoculadas por pulverização, separadamente, com os dois isolados de P. cichorii de tomateiro e um isolado de girassol (GIR-1). Os isolados IBSBF 2309 e IBSBF 2323 foram patogênicos à beldroega, datura, girassol, pimentão e tomate; GIR-1 foi patogênico apenas à beldroega, datura e girassol, não sendo patogênico ao pimentão e ao tomateiro. No Brasil não se conhecem fontes de resistência dentro do gênero Lycopersicon ou a reação de cultivares de tomateiros a esta bactéria. Vinte e oito genótipos de tomateiro provenientes do Banco de Germoplasma da empresa Sakata Seed Sudamerica Ltda., foram avaliados quanto a reação aos isolados IBSBF 2309 e IBSBF 2323 de P. cichorii, pelo método de inoculação nas folhas. Os maiores níveis de resistência foram observados em AF 11768, AF 2521, AF 11766, AF 11772, AF 229, AF 5719-1 e AF 8162. O genótipo AF 5719-1, que possui o gene Pto, que confere resistência a P. syringae pv. tomato, apresentou um bom nível de resistência a P. cichorii. A identificação de genótipos que apresentem bons níveis de resistência a este patógeno é importante para utilização em programas de melhoramento genético do tomateiro, visando a incorporação de genes de resistência a P. cichorii.<br>The occurrence of the bacterial blight, caused by Pseudomonas cichorii, was observed in two commercial tomato fields in the State of São Paulo in 2005. In view of this, studies were carried out in order to determine the host range of Pseudomonas cichorii isolates (IBSBF 2309 and IBSBF 2323), obtained from tomato plants at commercial fields located in the cities of Bragança Paulista and Mogi Guaçú, SP, Brazil. Caserta pumpkin, lettuce, purslane, eggplant, beet, broccoli, carrot, Jimson weed, sunflower, tobacco, scarlet eggplant, melon, cucumber, petunia, green pepper, radish, cabbage, arugula, parsley, and tomato plants were spray-inoculated separately with two isolates of P. cichorii obtained from tomato and one from sunflower (GIR-1). The isolates IBSBF 2309 and IBSBF 2323 were pathogenic to purslane, Jimson weed, sunflower, green pepper, and tomato; GIR-1 was only pathogenic to purslane, Jimson weed, and sunflower, but not pathogenic to green pepper or tomato. In Brazil, no sources of resistance to this bacterium are known within the Lycopersicon genus. The reaction of tomato cultivars to the bacterium is also unknown. Twenty-eight tomato genotypes from the Sakata Seed Sudamerica Ltda. Germplasm Bank were evaluated for their reaction to P. cichorii isolates IBSBF 2309 and IBSBF 2323, using the leaf inoculation method. The highest resistance levels were observed in tomato genotypes AF 11768, AF 2521, AF 11766, AF 11772, AF 229, AF 5719-1, and AF 8162. The genotype AF 5719-1, wich has the Pto gene imparting resistance to P. syringae pv. tomato, showed a good level of resistance to P. cichorii. The identification of genotypes with good levels of resistance to this pathogen is important, since they represent potential resources to be used in tomato breeding programs for incorporation of resistance genes against P. cichorii

    Effects of morin on snake venom phospholipase A(2) (PLA(2))

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFlavonoids are potent anti-inflammatory compounds isolated from several plant extracts, and have been used experimentally against inflammatory processes. In this work, a PLA(2) isolated from the Crotalus durissus cascavella venom and rat paw oedema were used as a model to. study the effect of flavonoids on PLA(2). We observed that a treatment of PLA(2) with morin induces several modifications in the aromatic amino acids, with accompanying changes in its amino acid composition. In addition, results from circular dichroism spectroscopy and UV scanning revealed important structural modifications. Concomitantly, a considerable decrease in the enzymatic and antibacterial activities was observed, even though anti-inflammatory and neurotoxic activities were not affected. These apparent controversial results may be an indication that PLA(2) possess a second pharmacological site which does not affect or depend on the enzymatic activityPergamon Press467751758FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO04/00040-3Oxfor
    corecore