101 research outputs found

    The Creative Class and the Creative Economy in Spain

    Get PDF
    This article describes an application in Spain of Florida's model (2002/Citation2010, Citation2005) about creativity, economy and growth. Creativity is an indicator that measures and combines technology, talent, and tolerance. Each of these is composed of three subindices. The most important conclusion from the data reported here is that creativity in particular, and growth in general, was less related to tolerance than the other two indices. However, the subindex of tolerance reflecting bohemia was important; the other two (foreigners and gays) were not

    The finger flexors occlusion threshold in sport-climbers: an exploratory study on its indirect approximation

    Get PDF
    Blood flow partially determines specific climbing endurance (SCE) as it mediates oxygen bio-availability in the finger flexors. Blood flow is related to occlusion threshold (OT), which is defined as the contraction intensity at which intramuscular pressure exceeds perfusion blood pressure resulting in the cessation of local blood flow. The OT is represented as an inflection point on a force-time graph when isometric force is registered and applied through maximal and continuous tests. Endurance time (ET) to exhaustion is influenced by the relative isometric applied force and is different for each climber. The aim of this study was to explore whether an approximation of the finger flexors OT in sport climbers through records of ET to exhaustion at different isometric relative intensities was possible. We measured maximum finger hang ETs at 6 intensities ranging from 85% to 35% maximal force in 34 sport climbers of advanced and elite level. The values obtained were analysed by two different methods in an attempt to determine a change in the shape of the curve in the intensity-ET relationship graphs that approximated the OT for each climber. The results suggest that the finger flexors OT could be different among climbers, regardless of their strength and ability level. The presented methods do not accurately reflect the OT, but could indicate the intensity at which blood flow is restored in the active muscles. This is the first study to indirectly approximate the finger flexors OT in sport-climbers, a parameter that could be essential to assess SCE

    A new performance threshold in sport climbing: A change in how climbing trainers work?

    Get PDF
    Objectives: Previous research has shown that the finger flexor's occlusion threshold (OT) could be different among sport climbers when expressed as a percentage of their maximum finger force (OT%), and that there is no association between the OT% and the climberś ability level. The aim of the present study was to evaluate the possible association between the relative finger force applied at the OT% (rff-OT%) and climbing ability level. Equipment and methods: WWe approximated the finger flexor's OT of 34 sport climbers by finger hang endurance test analyses at different intensities between 35% and 85% of their individual maximum finger force on a previously individually adapted edge depth, and we valued their rff-OT% as the relative force they could perform at that intensity. Results: We found a high correlation between the rff-OT% and climbing ability in elite climbers. These findings suggest that having an OT at the highest possible percentage is critical, in addition to having a high relative finger force, as this would enable climbers to express relative force at a wider range of intensities with favorable metabolic conditions

    The role of a class III gibberellin 2-oxidase in tomato internode elongation

    Full text link
    [EN] A network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth-promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode-specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli. To investigate internode elongation, a mutant with an elongated hypocotyl and internodes but wild-type petioles was identified through a forward genetic screen. In addition to stem-specific elongation, this mutant, named tomato internode elongated -1 (tie-1) is more sensitive to the GA biosynthetic inhibitor paclobutrazol and has altered levels of intermediate and bioactive GAs compared with wild-type plants. The mutation responsible for the internode elongation phenotype was mapped to GA2oxidase 7, a class III GA 2-oxidase in the GA biosynthetic pathway, through a bulked segregant analysis and bioinformatic pipeline, and confirmed by transgenic complementation. Furthermore, bacterially expressed recombinant TIE protein was shown to have bona fide GA 2-oxidase activity. These results define a critical role for this gene in internode elongation and are significant because they further the understanding of the role of GA biosynthetic genes in organ-specific elongation.This work used the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 Instrumentation Grants S10RR029668 and S10RR027303. We thank the Tomato Genetics Resource Center for providing seed of the M82 and Heinz cultivars. The material was developed by and/or obtained from the UC Davis/C M Rick Tomato Genetics Resource Center and maintained by the Department of Plant Sciences, University of California, Davis, CA 95616, USA. We thank Anthony Bolger, Alisdair Fernie and Bjorn Usadel for providing us with access to pre-publication genomic reads of the S. lycopersicum cultivar M82, and Cristina Urbez and Noel Blanco-Tourinan (IBMCP, Spain) for technical help with in vitro production of TIE1. This work was supported in part by the Elsie Taylor Stocking Memorial Fellowship awarded to ASL in 2013, by NSF grant IOS-0820854, by USDA National Institute of Food and Agriculture project CA-D-PLB-2465-H, by internal UC Davis funds, and by Spanish Ministry of Economy and Competitiveness grant BFU2016-80621-P.Lavelle, A.; Gath, N.; Devisetty, U.; Carrera Bergua, E.; Lopez Diaz, I.; Blazquez Rodriguez, MA.; Maloof, J. (2018). The role of a class III gibberellin 2-oxidase in tomato internode elongation. The Plant Journal. https://doi.org/10.1111/tpj.14145SAndrés, F., Porri, A., Torti, S., Mateos, J., Romera-Branchat, M., García-Martínez, J. L., … Coupland, G. (2014). SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at theArabidopsisshoot apex to regulate the floral transition. Proceedings of the National Academy of Sciences, 111(26), E2760-E2769. doi:10.1073/pnas.1409567111Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., … Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9), 1034-1038. doi:10.1038/ng.3046Bowen, M. E., Henke, K., Siegfried, K. R., Warman, M. L., & Harris, M. P. (2011). Efficient Mapping and Cloning of Mutations in Zebrafish by Low-Coverage Whole-Genome Sequencing. Genetics, 190(3), 1017-1024. doi:10.1534/genetics.111.136069Burset, M. (2000). Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Research, 28(21), 4364-4375. doi:10.1093/nar/28.21.4364Chen, W., Yao, J., Chu, L., Yuan, Z., Li, Y., & Zhang, Y. (2015). Genetic mapping of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. Theoretical and Applied Genetics, 128(3), 539-547. doi:10.1007/s00122-014-2452-2Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. doi:10.4161/fly.19695Cuperus, J. T., Montgomery, T. A., Fahlgren, N., Burke, R. T., Townsend, T., Sullivan, C. M., & Carrington, J. C. (2009). Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proceedings of the National Academy of Sciences, 107(1), 466-471. doi:10.1073/pnas.0913203107Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979Devisetty, U. K., Covington, M. F., Tat, A. V., Lekkala, S., & Maloof, J. N. (2014). Polymorphism Identification and Improved Genome Annotation ofBrassica rapaThrough Deep RNA Sequencing. G3: Genes|Genomes|Genetics, 4(11), 2065-2078. doi:10.1534/g3.114.012526Eckardt, N. A. (2007). GA Perception and Signal Transduction: Molecular Interactions of the GA Receptor GID1 with GA and the DELLA Protein SLR1 in Rice. The Plant Cell, 19(7), 2095-2097. doi:10.1105/tpc.107.054916Ernst, H. A., Lo Leggio, L., Willemoës, M., Leonard, G., Blum, P., & Larsen, S. (2006). Structure of the Sulfolobus solfataricus α-Glucosidase: Implications for Domain Conservation and Substrate Recognition in GH31. Journal of Molecular Biology, 358(4), 1106-1124. doi:10.1016/j.jmb.2006.02.056Fillatti, J. J., Kiser, J., Rose, R., & Comai, L. (1987). Efficient Transfer of a Glyphosate Tolerance Gene into Tomato Using a Binary Agrobacterium Tumefaciens Vector. Nature Biotechnology, 5(7), 726-730. doi:10.1038/nbt0787-726Garrison , E. Marth , G. 2012 Haplotype-based variant detection from short-read sequencingHedden, P., & Graebe, J. E. (1985). Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates ofCucurbita maxima endosperm andMalus pumila embryos. Journal of Plant Growth Regulation, 4(1-4), 111-122. doi:10.1007/bf02266949Kimura, S., & Sinha, N. (2008). Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. Cold Spring Harbor Protocols, 2008(12), pdb.emo105-pdb.emo105. doi:10.1101/pdb.emo105Koenig, D., Jimenez-Gomez, J. M., Kimura, S., Fulop, D., Chitwood, D. H., Headland, L. R., … Maloof, J. N. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences, 110(28), E2655-E2662. doi:10.1073/pnas.1309606110Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Li, J., Sima, W., Ouyang, B., Wang, T., Ziaf, K., Luo, Z., … Ye, Z. (2012). Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. Journal of Experimental Botany, 63(18), 6407-6420. doi:10.1093/jxb/ers295Lorrain, S., & Fankhauser, C. (2012). Plant Development: Should I Stop or Should I Grow? Current Biology, 22(16), R645-R647. doi:10.1016/j.cub.2012.06.054Menda, N., Semel, Y., Peled, D., Eshed, Y., & Zamir, D. (2004). In silicoscreening of a saturated mutation library of tomato. The Plant Journal, 38(5), 861-872. doi:10.1111/j.1365-313x.2004.02088.xMichelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828-9832. doi:10.1073/pnas.88.21.9828Pimenta Lange, M. J., Liebrandt, A., Arnold, L., Chmielewska, S.-M., Felsberger, A., Freier, E., … Lange, T. (2013). Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L. Phytochemistry, 90, 62-69. doi:10.1016/j.phytochem.2013.02.006Raskin, I., & Kende, H. (1984). Role of Gibberellin in the Growth Response of Submerged Deep Water Rice. Plant Physiology, 76(4), 947-950. doi:10.1104/pp.76.4.947Reinecke, D. M., Wickramarathna, A. D., Ozga, J. A., Kurepin, L. V., Jin, A. L., Good, A. G., & Pharis, R. P. (2013). Gibberellin 3-oxidase Gene Expression Patterns Influence Gibberellin Biosynthesis, Growth, and Development in Pea. PLANT PHYSIOLOGY, 163(2), 929-945. doi:10.1104/pp.113.225987Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11(3), R25. doi:10.1186/gb-2010-11-3-r25Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, J. P. (2011). Integrative genomics viewer. Nature Biotechnology, 29(1), 24-26. doi:10.1038/nbt.1754Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A. H., Nielsen, K. L., … Andersen, S. U. (2009). SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods, 6(8), 550-551. doi:10.1038/nmeth0809-550Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. doi:10.1038/nmeth.2089Schomburg, F. M., Bizzell, C. M., Lee, D. J., Zeevaart, J. A. D., & Amasino, R. M. (2002). Overexpression of a Novel Class of Gibberellin 2-Oxidases Decreases Gibberellin Levels and Creates Dwarf Plants. The Plant Cell, 15(1), 151-163. doi:10.1105/tpc.005975Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036Sun, T., & Gubler, F. (2004). MOLECULAR MECHANISM OF GIBBERELLIN SIGNALING IN PLANTS. Annual Review of Plant Biology, 55(1), 197-223. doi:10.1146/annurev.arplant.55.031903.141753Thorvaldsdottir, H., Robinson, J. T., & Mesirov, J. P. (2012). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178-192. doi:10.1093/bib/bbs017(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9), 1105-1111. doi:10.1093/bioinformatics/btp120Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016Tsai, H., Howell, T., Nitcher, R., Missirian, V., Watson, B., Ngo, K. J., … Comai, L. (2011). Discovery of Rare Mutations in Populations: TILLING by Sequencing. Plant Physiology, 156(3), 1257-1268. doi:10.1104/pp.110.169748Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., … Matsuoka, M. (2007). Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin. The Plant Cell, 19(7), 2140-2155. doi:10.1105/tpc.106.043729Wickham, H. (2016). ggplot2. Use R! doi:10.1007/978-3-319-24277-4Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., & Provart, N. J. (2007). An «Electronic Fluorescent Pictograph» Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS ONE, 2(8), e718. doi:10.1371/journal.pone.0000718Xu, H., Liu, Q., Yao, T., & Fu, X. (2014). Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 21, 89-95. doi:10.1016/j.pbi.2014.06.010Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology, 59(1), 225-251. doi:10.1146/annurev.arplant.59.032607.09280

    Annular pigment band on the posterior capsule following blunt ocular trauma: a case report

    Get PDF
    BACKGROUND: To report an unusual case of annular pigment band on the posterior capsule following blunt ocular trauma. CASE PRESENTATION: We describe an annular pigment band on the posterior capsule following blunt ocular trauma in a 28-year old male patient. Repeat examinations revealed no evidence of other signs of blunt ocular trauma or pigment dispersion syndrome in either eye. CONCLUSION: The annular pigment band in this case corresponds to the adherence of the hyaloideocapsulare ligament to the posterior capsule and reconfirms its rare visualization in the living eye. This finding may be an isolated sign of blunt ocular trauma and a compromised integrity of the vitreolenticular interface should be strongly suspected. We recommend careful documentation in context of future cataract surgery in these eyes

    Insulin autoantibodies as determined by competitive radiobinding assay are positively correlated with impaired beta-cell function — The Ulm-Frankfurt population study

    Get PDF
    Out of a random population of 4208 non-diabetic pupils without a family history of Type I diabetes 44 (1.05%) individuals had islet cell antibody (ICA) levels greater or equal to 5 Juvenile Diabetes Foundation (JDF) units. 39 of these ICA-positives could be repeatedly tested for circulating insulin autoantibodies (CIAA) using a competitive radiobinding assay. The results were compared with the insulin responses in the intravenous glucose tolerance tests (IVGTT) and with HLA types. Six pupils were positive for CIAA. All of them had complement-fixing ICA, and 5 of them were HLA-DR4 positive. Three of the 6 showed a first-phase insulin response below the first percentile of normal controls. Our data indicate that in population-based studies CIAA can be considered as a high risk marker for impaired beta-cell function in non-diabetic ICA-positive individuals

    Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules

    Full text link
    [EN] Age-regulated microRNA156 (miR156) and targets similarly control the competence to flower in diverse species. By contrast, the diterpene hormone gibberellin (GA) and the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote flowering in the facultative long-day Arabidopsis thaliana, but suppress it in the day-neutral tomato (Solanum lycopersicum). We combined genetic and molecular studies and described a new interplay between GA and two unrelated miRNA-associated pathways that modulates tomato transition to flowering. Tomato PROCERA/DELLA activity is required to promote flowering along with the miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL/SBP) transcription factors by activating SINGLE FLOWER TRUSS (SFT) in the leaves and the MADS-Boxgene APETALA1(AP1)/MC at the shoot apex. Conversely, miR319-targeted LANCEOLATE represses floral transition by increasing GA concentrations and inactivating SFT in the leaves and AP1/MC at the shoot apex. Importantly, the combination of high GA concentrations/responses with the loss of SPL/SPB function impaired canonical meristem maturation and flower initiation in tomato. Our results reveal a cooperative regulation of tomato floral induction and flower development, integrating age cues (miR156 module) with GA responses and miR319-controlled pathways. Importantly, this study contributes to elucidate the mechanisms underlying the effects of GA in controlling flowering time in a day-neutral species.We thank Dr C. Schommer for kindly providing tcp4-soj8/+ seeds, and Carlos Rojas for Arabidopsis flowering time analyses. This work was supported by FAPESP (grant no. 15/17892-7 and fellowships nos 15/23826-7 and 13/16949-0). The authors declare no conflict of interest.Silva, G.; Silva, E.; Correa, J.; Vicente, M.; Jiang, N.; Notini, M.; Junior, A.... (2018). Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. New Phytologist. 221(3):1328-1344. https://doi.org/10.1111/nph.15492S132813442213Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291Bassel, G. W., Mullen, R. T., & Bewley, J. D. (2008). procerais a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. Journal of Experimental Botany, 59(3), 585-593. doi:10.1093/jxb/erm354Ben‐Naim, O., Eshed, R., Parnis, A., Teper‐Bamnolker, P., Shalit, A., Coupland, G., … Lifschitz, E. (2006). The CCAAT binding factor can mediate interactions between CONSTANS‐like proteins and DNA. The Plant Journal, 46(3), 462-476. doi:10.1111/j.1365-313x.2006.02706.xBoss, P. K., & Thomas, M. R. (2002). Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature, 416(6883), 847-850. doi:10.1038/416847aBurko, Y., Shleizer-Burko, S., Yanai, O., Shwartz, I., Zelnik, I. D., Jacob-Hirsch, J., … Ori, N. (2013). A Role for APETALA1/FRUITFULL Transcription Factors in Tomato Leaf Development. The Plant Cell, 25(6), 2070-2083. doi:10.1105/tpc.113.113035Cardon, G., Höhmann, S., Klein, J., Nettesheim, K., Saedler, H., & Huijser, P. (1999). Molecular characterisation of the Arabidopsis SBP-box genes. Gene, 237(1), 91-104. doi:10.1016/s0378-1119(99)00308-xCarrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A., & Garcia-Martinez, J. L. (2012). Characterization of the procera Tomato Mutant Shows Novel Functions of the SlDELLA Protein in the Control of Flower Morphology, Cell Division and Expansion, and the Auxin-Signaling Pathway during Fruit-Set and Development. Plant Physiology, 160(3), 1581-1596. doi:10.1104/pp.112.204552Carvalho, R. F., Campos, M. L., Pino, L. E., Crestana, S. L., Zsögön, A., Lima, J. E., … Peres, L. E. (2011). Convergence of developmental mutants into a single tomato model system: «Micro-Tom» as an effective toolkit for plant development research. Plant Methods, 7(1), 18. doi:10.1186/1746-4811-7-18Cubas, P., Lauter, N., Doebley, J., & Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal, 18(2), 215-222. doi:10.1046/j.1365-313x.1999.00444.xDavière, J.-M., Wild, M., Regnault, T., Baumberger, N., Eisler, H., Genschik, P., & Achard, P. (2014). Class I TCP-DELLA Interactions in Inflorescence Shoot Apex Determine Plant Height. Current Biology, 24(16), 1923-1928. doi:10.1016/j.cub.2014.07.012Silva, G. F. F. e, Silva, E. M., da Silva Azevedo, M., Guivin, M. A. C., Ramiro, D. A., Figueiredo, C. R., … Nogueira, F. T. S. (2014). microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. The Plant Journal, 78(4), 604-618. doi:10.1111/tpj.12493Gallego-Bartolome, J., Minguet, E. G., Marin, J. A., Prat, S., Blazquez, M. A., & Alabadi, D. (2010). Transcriptional Diversification and Functional Conservation between DELLA Proteins in Arabidopsis. Molecular Biology and Evolution, 27(6), 1247-1256. doi:10.1093/molbev/msq012Gallego-Giraldo, L., García-Martínez, J. L., Moritz, T., & López-Díaz, I. (2007). Flowering in Tobacco Needs Gibberellins but is not Promoted by the Levels of Active GA1 and GA4 in the Apical Shoot. Plant and Cell Physiology, 48(4), 615-625. doi:10.1093/pcp/pcm034Galvao, V. C., Horrer, D., Kuttner, F., & Schmid, M. (2012). Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 139(21), 4072-4082. doi:10.1242/dev.080879García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813. doi:10.1093/jxb/ers229Gargul, J. M., Mibus, H., & Serek, M. (2013). Constitutive overexpression of Nicotiana GA 2 ox leads to compact phenotypes and delayed flowering in Kalanchoë blossfeldiana and Petunia hybrida. Plant Cell, Tissue and Organ Culture (PCTOC), 115(3), 407-418. doi:10.1007/s11240-013-0372-5Goldberg-Moeller, R., Shalom, L., Shlizerman, L., Samuels, S., Zur, N., Ophir, R., … Sadka, A. (2013). Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds. Plant Science, 198, 46-57. doi:10.1016/j.plantsci.2012.09.012Hauvermale, A. L., Ariizumi, T., & Steber, C. M. (2012). Gibberellin Signaling: A Theme and Variations on DELLA Repression. Plant Physiology, 160(1), 83-92. doi:10.1104/pp.112.200956Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., & Coupland, G. (2016). Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 37(3), 254-266. doi:10.1016/j.devcel.2016.04.001Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M., & Matsuoka, M. (2002). The Gibberellin Signaling Pathway Is Regulated by the Appearance and Disappearance of SLENDER RICE1 in Nuclei. The Plant Cell, 14(1), 57-70. doi:10.1105/tpc.010319Jung, J.-H., Ju, Y., Seo, P. J., Lee, J.-H., & Park, C.-M. (2011). The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. The Plant Journal, 69(4), 577-588. doi:10.1111/j.1365-313x.2011.04813.xKing, R. W., & Ben-Tal, Y. (2001). A Florigenic Effect of Sucrose in Fuchsia hybrida Is Blocked by Gibberellin-Induced Assimilate Competition. Plant Physiology, 125(1), 488-496. doi:10.1104/pp.125.1.488Kubota, A., Ito, S., Shim, J. S., Johnson, R. S., Song, Y. H., Breton, G., … Imaizumi, T. (2017). TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLOS Genetics, 13(6), e1006856. doi:10.1371/journal.pgen.1006856Kudla, J., & Bock, R. (2016). Lighting the Way to Protein-Protein Interactions: Recommendations on Best Practices for Bimolecular Fluorescence Complementation Analyses. The Plant Cell, 28(5), 1002-1008. doi:10.1105/tpc.16.00043Lifschitz, E., Eviatar, T., Rozman, A., Shalit, A., Goldshmidt, A., Amsellem, Z., … Eshed, Y. (2006). The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences, 103(16), 6398-6403. doi:10.1073/pnas.0601620103Liu, J., Cheng, X., Liu, P., Li, D., Chen, T., Gu, X., & Sun, J. (2017). MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis. PLOS Genetics, 13(5), e1006833. doi:10.1371/journal.pgen.1006833Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Livne, S., Lor, V. S., Nir, I., Eliaz, N., Aharoni, A., Olszewski, N. E., … Weiss, D. (2015). Uncovering DELLA-Independent Gibberellin Responses by Characterizing New Tomato procera Mutants. The Plant Cell, 27(6), 1579-1594. doi:10.1105/tpc.114.132795Lombardi-Crestana, S., da Silva Azevedo, M., e Silva, G. F. F., Pino, L. E., Appezzato-da-Glória, B., Figueira, A., … Peres, L. E. P. (2012). The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots. Journal of Experimental Botany, 63(15), 5689-5703. doi:10.1093/jxb/ers221Lozano, R., Gimenez, E., Cara, B., Capel, J., & Angosto, T. (2009). Genetic analysis of reproductive development in tomato. The International Journal of Developmental Biology, 53(8-9-10), 1635-1648. doi:10.1387/ijdb.072440rlMartin, K., Kopperud, K., Chakrabarty, R., Banerjee, R., Brooks, R., & Goodin, M. M. (2009). Transient expression inNicotiana benthamianafluorescent marker lines provides enhanced definition of protein localization, movement and interactionsin planta. The Plant Journal, 59(1), 150-162. doi:10.1111/j.1365-313x.2009.03850.xMartínez-Bello, L., Moritz, T., & López-Díaz, I. (2015). Silencing C19-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants. Journal of Experimental Botany, 66(19), 5897-5910. doi:10.1093/jxb/erv300Meissner, R., Chague, V., Zhu, Q., Emmanuel, E., Elkind, Y., & Levy, A. A. (2000). A high throughput system for transposon tagging and promoter trapping in tomato. The Plant Journal, 22(3), 265-274. doi:10.1046/j.1365-313x.2000.00735.xMolinero-Rosales, N., Jamilena, M., Zurita, S., Gomez, P., Capel, J., & Lozano, R. (1999). FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. The Plant Journal, 20(6), 685-693. doi:10.1046/j.1365-313x.1999.00641.xMorea, E. G. O., da Silva, E. M., e Silva, G. F. F., Valente, G. T., Barrera Rojas, C. H., Vincentz, M., & Nogueira, F. T. S. (2016). Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0716-5Mounet, F., Moing, A., Garcia, V., Petit, J., Maucourt, M., Deborde, C., … Lemaire-Chamley, M. (2009). Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development. Plant Physiology, 149(3), 1505-1528. doi:10.1104/pp.108.133967Nir, I., Shohat, H., Panizel, I., Olszewski, N., Aharoni, A., & Weiss, D. (2017). The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure. The Plant Cell, 29(12), 3186-3197. doi:10.1105/tpc.17.00542Ohad, N., Shichrur, K., & Yalovsky, S. (2007). The Analysis of Protein-Protein Interactions in Plants by Bimolecular Fluorescence Complementation. Plant Physiology, 145(4), 1090-1099. doi:10.1104/pp.107.107284Ori, N., Cohen, A. R., Etzioni, A., Brand, A., Yanai, O., Shleizer, S., … Eshed, Y. (2007). Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 39(6), 787-791. doi:10.1038/ng2036Pal, S., Zhao, J., Khan, A., Yadav, N. S., Batushansky, A., Barak, S., … Rachmilevitch, S. (2016). Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Scientific Reports, 6(1). doi:10.1038/srep39321Palatnik, J. F., Wollmann, H., Schommer, C., Schwab, R., Boisbouvier, J., Rodriguez, R., … Weigel, D. (2007). Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319. Developmental Cell, 13(1), 115-125. doi:10.1016/j.devcel.2007.04.012Parapunova, V., Busscher, M., Busscher-Lange, J., Lammers, M., Karlova, R., Bovy, A. G., … de Maagd, R. A. (2014). Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology, 14(1), 157. doi:10.1186/1471-2229-14-157Park, S. J., Jiang, K., Schatz, M. C., & Lippman, Z. B. (2011). Rate of meristem maturation determines inflorescence architecture in tomato. Proceedings of the National Academy of Sciences, 109(2), 639-644. doi:10.1073/pnas.1114963109Pharis, R. P., & King, R. W. (1985). Gibberellins and Reproductive Development in Seed Plants. Annual Review of Plant Physiology, 36(1), 517-568. doi:10.1146/annurev.pp.36.060185.002505Porri, A., Torti, S., Romera-Branchat, M., & Coupland, G. (2012). Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development, 139(12), 2198-2209. doi:10.1242/dev.077164Preston, J. C., & Hileman, L. C. (2013). Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00080Reinecke, D. M., Wickramarathna, A. D., Ozga, J. A., Kurepin, L. V., Jin, A. L., Good, A. G., & Pharis, R. P. (2013). Gibberellin 3-oxidase Gene Expression Patterns Influence Gibberellin Biosynthesis, Growth, and Development in Pea. PLANT PHYSIOLOGY, 163(2), 929-945. doi:10.1104/pp.113.225987Rubio-Somoza, I., & Weigel, D. (2011). MicroRNA networks and developmental plasticity in plants. Trends in Plant Science, 16(5), 258-264. doi:10.1016/j.tplants.2011.03.001Rubio-Somoza, I., Zhou, C.-M., Confraria, A., Martinho, C., von Born, P., Baena-Gonzalez, E., … Weigel, D. (2014). Temporal Control of Leaf Complexity by miRNA-Regulated Licensing of Protein Complexes. Current Biology, 24(22), 2714-2719. doi:10.1016/j.cub.2014.09.058Salinas, M., Xing, S., Höhmann, S., Berndtgen, R., & Huijser, P. (2011). Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta, 235(6), 1171-1184. doi:10.1007/s00425-011-1565-ySarvepalli, K., & Nath, U. (2011). Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. The Plant Journal, 67(4), 595-607. doi:10.1111/j.1365-313x.2011.04616.xSerrano-Mislata, A., Bencivenga, S., Bush, M., Schiessl, K., Boden, S., & Sablowski, R. (2017). DELLA genes restrict inflorescence meristem function independently of plant height. Nature Plants, 3(9), 749-754. doi:10.1038/s41477-017-0003-yShikata, M., & Ezura, H. (2016). Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation. Methods in Molecular Biology, 47-55. doi:10.1007/978-1-4939-3115-6_5Stettler, R. F. (1964). DOSAGE EFFECTS OF THE LANCEOLATE GENE IN TOMATO. American Journal of Botany, 51(3), 253-264. doi:10.1002/j.1537-2197.1964.tb06628.xVarkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3(1), 12. doi:10.1186/1746-4811-3-12Vendemiatti, E., Zsögön, A., Silva, G. F. F. e, de Jesus, F. A., Cutri, L., Figueiredo, C. R. F., … Peres, L. E. P. (2017). Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. Plant Science, 259, 35-47. doi:10.1016/j.plantsci.2017.03.006Vicente, M. H., Zsögön, A., de Sá, A. F. L., Ribeiro, R. V., & Peres, L. E. P. (2015). Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato ( Solanum lycopersicum ). Journal of Plant Physiology, 177, 11-19. doi:10.1016/j.jplph.2015.01.003Wang, J.-W., Czech, B., & Weigel, D. (2009). miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell, 138(4), 738-749. doi:10.1016/j.cell.2009.06.014Wilkie, J. D., Sedgley, M., & Olesen, T. (2008). Regulation of floral initiation in horticultural trees. Journal of Experimental Botany, 59(12), 3215-3228. doi:10.1093/jxb/ern188Yamaguchi, A., Wu, M.-F., Yang, L., Wu, G., Poethig, R. S., & Wagner, D. (2009). The MicroRNA-Regulated SBP-Box Transcription Factor SPL3 Is a Direct Upstream Activator of LEAFY, FRUITFULL, and APETALA1. Developmental Cell, 17(2), 268-278. doi:10.1016/j.devcel.2009.06.007Yamaguchi, N., Winter, C. M., Wu, M.-F., Kanno, Y., Yamaguchi, A., Seo, M., & Wagner, D. (2014). Gibberellin Acts Positively Then Negatively to Control Onset of Flower Formation in Arabidopsis. Science, 344(6184), 638-641. doi:10.1126/science.1250498Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology, 59(1), 225-251. doi:10.1146/annurev.arplant.59.032607.092804Yamamoto, A., Nakamura, T., Adu-Gyamfi, J. J., & Saigusa, M. (2002). RELATIONSHIP BETWEEN CHLOROPHYLL CONTENT IN LEAVES OF SORGHUM AND PIGEONPEA DETERMINED BY EXTRACTION METHOD AND BY CHLOROPHYLL METER (SPAD-502). Journal of Plant Nutrition, 25(10), 2295-2301. doi:10.1081/pln-120014076Yanai, O., Shani, E., Russ, D., & Ori, N. (2011). Gibberellin partly mediates LANCEOLATE activity in tomato. The Plant Journal, 68(4), 571-582. doi:10.1111/j.1365-313x.2011.04716.xYu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014Yuste-Lisbona, F. J., Quinet, M., Fernández-Lozano, A., Pineda, B., Moreno, V., Angosto, T., & Lozano, R. (2016). Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports, 6(1). doi:10.1038/srep18796Zhang, S., Zhang, D., Fan, S., Du, L., Shen, Y., Xing, L., … Han, M. (2016). Effect of exogenous GA 3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in ‘Fuji’ apple ( Malus domestica Borkh.). Plant Physiology and Biochemistry, 107, 178-186. doi:10.1016/j.plaphy.2016.06.005Zhang, X., Zou, Z., Zhang, J., Zhang, Y., Han, Q., Hu, T., … Ye, Z. (2010). Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Letters, 585(2), 435-439. doi:10.1016/j.febslet.2010.12.03

    Prolonged survival of patients with angioimmunoblastic T-cell lymphoma after high-dose chemotherapy and autologous stem cell transplantation: the GELTAMO experience

    Get PDF
    Abstract OBJECTIVES: Angioimmunoblastic T-cell lymphoma (AIL) is a rare lymphoma with a poor prognosis and no standard treatment. Here, we report our experiences with 19 patients treated with high-dose chemotherapy and autologous stem cell transplantation (HDC/ASCT) within the GELTAMO co-operative group between 1992 and 2004. METHODS: The median age at transplantation was 46 yr. Fifteen patients underwent the procedure as front-line therapy and four patients as salvage therapy. Most patients received peripheral stem cells (90%) coupled with BEAM or BEAC as conditioning regimen (79%). RESULTS: A 79% of patients achieved complete response, 5% partial response and 16% failed the procedure. After a median follow-up of 25 months, eight patients died (seven of progressive disease and secondary neoplasia), while actuarial overall survival and progression-free survival at 3 yr was 60% and 55%. Prognostic factors associated with a poor outcome included bone marrow involvement, transplantation in refractory disease state, attributing more than one factor of the age-adjusted-International Prognostic Index, Pretransplant peripheral T-cell lymphoma (PTCL) Score or Prognostic Index for PTCL. CONCLUSIONS: More than half of the patients with AIL that display unfavourable prognostic factors at diagnosis or relapse would be expected to be alive and disease-free after 3 yr when treated with HDC/ASCT. Patients who are transplanted in a refractory disease state do not benefit from this procedure
    corecore