3,378 research outputs found

    Production of butanol by fermentation in the presence of cocultures of clostridium

    Get PDF
    Sugars are converted to a mixture of solvents including butanol by a fermentation process employing a coculture of microorganisms of the Clostridium genus, one of said microorganisms favoring the production of butyric acid and the other of which converts the butyric acid so produced to butanol. The use of a coculture substantially increases the yield of butanol over that obtained using a culture employing only one microorganism

    Looking for a light Higgs boson in the overlooked channel

    Full text link
    The final state obtained when a Higgs boson decays to a photon and a Z boson has been mostly overlooked in current searches for a light Higgs boson. However, when the Z boson decays leptonically, all final state particles in this channel can be measured, allowing for accurate reconstructions of the Higgs mass and angular correlations. We determine the sensitivity of the Large Hadron Collider (LHC) running at center of masses energies of 8 and 14 TeV to Standard Model (SM) Higgs bosons with masses in the 120 - 130 GeV range. For the 8 TeV LHC, sensitivity to several times the the SM cross section times branching ratio may be obtained with 20 inverse femtobarns of integrated luminosity, while for the 14 TeV LHC, the SM rate is probed with about 100 inverse femtobarns of integrated luminosity.Comment: 4 pages, 4 figures. Improves on version 1 in that 8 and 14 TeV LHC running is considered, the case of a 125 GeV Higgs is treated specifically, and the effect of an additional jet in the final state has been taken into account in studying experimental sensitivit

    A proposed new policy for planetary protection

    Get PDF
    A critical review of the present policy was conducted with emphasis on its application to future planetary exploration. The probable impact of recent data on the implementation of the present policy was also assessed. The existing policy and its implementation were found to: be excessive for certain missions (e.g., Voyager), neglect the contamination hazard posed by the bulk constituent organics of spacecraft, be ambiguous for certain missions (e.g., Pioneer Venus), and treat all extraterrestrial sample return missions alike. The major features of the proposed policy are planet/mission combinations, a qualitative top level statement, and implementation by exception rather than rule. The concept of planet/mission categories permits the imposition of requirements according to both biological interest in the target planet and the relative contamination hazard of the mission type

    Kinetic decoupling of neutralino dark matter

    Get PDF
    After neutralinos cease annihilating in the early Universe, they may still scatter elastically from other particles in the primordial plasma. At some point in time, however, they will eventually stop scattering. We calculate the cross sections for neutralino elastic scattering from standard-model particles to determine the time at which this kinetic decoupling occurs. We show that kinetic decoupling occurs above a temperature TT\sim MeV. Thereafter, neutralinos act as collisionless cold dark matter.Comment: Replaced with revised version, new references adde

    QED radiative corrections to the decay pi^0 to e^+e^-

    Full text link
    We reconsider QED radiative corrections (RC) to the π0e+e\pi^{0}\to e^{+}e^{-} decay width. One kind of RC investigated earlier has a renormalization group origin and can be associated with the final state interaction of electron and positron. It determines the distribution of lepton pair invariant masses in the whole kinematic region. The other type of RC has a double-logarithmic character and is related to almost on-mass-shell behavior of the lepton form factors. The total effect of RC for the π0e+e\pi^{0}\to e^{+}e^{-} decay is estimated to be 3.2% and for the decay ηe+e\eta \to e^{+}e^{-} is 4.3%.Comment: 12 pages, 3 figure

    Distance-Redshift in Inhomogeneous Omega0=1Omega_0=1 Friedmann-Lemaitre-Robertson-Walker Cosmology

    Full text link
    Distance--redshift relations are given in terms of associated Legendre functions for partially filled beam observations inspatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmologies. These models are dynamically pressure-free, flat FLRW on large scales but, due to mass inhomogeneities, differ in their optical properties. The partially filled beam area-redshift equation is a Lame^{\prime} equation for arbitrary FLRW and is shown to simplify to the associated Legendre equation for the spatially flat, i.e. Ω0=1\Omega_0=1 case. We fit these new analytic Hubble curves to recent supernovae (SNe) data in an attempt to determine both the mass parameter Ωm\Omega_m and the beam filling parameter ν\nu. We find that current data are inadequate to limit ν\nu. However, we are able to estimate what limits are possible when the number of observed SNe is increased by factor of 10 or 100, sample sizes achievable in the near future with the proposed SuperNova Acceleration Probe satellite.Comment: 9 pages, 3 figure

    Can Heavy WIMPs Be Captured by the Earth?

    Get PDF
    If weakly interacting massive particles (WIMPs) in bound solar orbits are systematically driven into the Sun by solar-system resonances (as Farinella et al. have shown is the case for many Earth-crossing asteroids), then the capture of high-mass WIMPs by the Earth would be affected dramatically because high-mass WIMPs are captured primarily from bound orbits. WIMP capture would be eliminated for M_x>630 GeV and would be highly suppressed for M_x>~150 GeV. Annihilation of captured WIMPs and anti-WIMPs is expected to give rise to neutrinos coming from the Earth's center. The absence of such a neutrino signal has been used to place limits on WIMP parameters. At present, one does not know if typical WIMP orbits are in fact affected by these resonances. Until this question is investigated and resolved, one must (conservatively) assume that they are. Hence, limits on high-mass WIMP parameters are significantly weaker than previously believed.Comment: 8 pages + 1 figure. Submitted to Ap

    Degenerate Fermi gas perturbations at standard background cosmology

    Full text link
    The hypothesis of a tiny fraction of the cosmic inventory evolving cosmologically as a degenerate Fermi gas test fluid at some dominant cosmological background is investigated. Our analytical results allow for performing preliminary computations to the evolution of perturbations for relativistic and non-relativistic test fluids. The density fluctuation, δ\delta, the fluid velocity divergence, θ\theta, and an explicit expression for the dynamics of the shear stress, σ\sigma, are obtained for a degenerate Fermi gas in the background regime of radiation. Extensions to the dominance of matter and to the Λ\LambdaCDM cosmological background are also investigated and lessons concerning the formation of large structures of degenerate Fermi gas are depicted.Comment: 20 pages, 4 figure

    Microscopic calculation of 6Li elastic and transition form factors

    Get PDF
    Variational Monte Carlo wave functions, obtained from a realistic Hamiltonian consisting of the Argonne v18 two-nucleon and Urbana-IX three-nucleon interactions, are used to calculate the 6Li ground-state longitudinal and transverse form factors as well as transition form factors to the first four excited states. The charge and current operators include one- and two-body components, leading terms of which are constructed consistently with the two-nucleon interaction. The calculated form factors and radiative widths are in good agreement with available experimental data.Comment: 9 pages, 2 figures, REVTeX, submitted to Physical Review Letters, with updated introduction and reference

    Cosmic antiprotons as a probe for supersymmetric dark matter?

    Get PDF
    The flux of cosmic ray antiprotons from neutralino annihilations in the galactic halo is computed for a large sample of models in the MSSM (the Minimal Supersymmetric extension of the Standard Model). We also revisit the problem of estimating the background of low-energy cosmic ray induced secondary antiprotons, taking into account their subsequent interactions (and energy loss) and the presence of nuclei in the interstellar matter. We consider a two-zone diffusion model, with and without a galactic wind. We find that, given the uncertainties in the background predictions, there is no need for a primary (exotic) component to explain present data. However, allowing for a signal by playing with the uncertainties in the background estimate, we discuss the characteristic features of the supersymmetric models which give a satisfactory description of the data. We point out that in some cases the optimal kinetic energy to search for a signal from supersymmetric dark matter is above several GeV, rather than the traditional sub-GeV region. The large astrophysical uncertainties involved do not, one the other hand, allow the exclusion of any of the MSSM models we consider, on the basis of data. We present besides numerical results also convenient parameterizations of the antiproton yields of all `basic' two-body final states. We also give examples of the yield and differential energy spectrum for a set of supersymmetric models with high rates. We also remark that it is difficult to put a limit on the antiproton lifetime from present measurements, since the injection of antiprotons from neutralino annihilation can compensate the loss from decay.Comment: 22 pages, 11 figures, uses emulateapj.st
    corecore