137 research outputs found

    Magnon softening in a ferromagnetic monolayer: a first-principles spin dynamics study

    Full text link
    We study the Fe/W(110) monolayer system through a combination of first principles calculations and atomistic spin dynamics simulations. We focus on the dispersion of the spin waves parallel to the [001] direction. Our results compare favorably with the experimental data of Prokop et al. [Phys. Rev. Lett. 102, 177206], and correctly capture a drastic softening of the magnon spectrum, with respect to bulk bcc Fe. The suggested shortcoming of the itinerant electron model, in particular that given by density functional theory, is refuted. We also demonstrate that finite temperature effects are significant, and that atomistic spin dynamics simulations represent a powerful tool with which to include these.Comment: v1: 11 pages, 3 figures. v2: double column, 5 pages, 3 figures, typos corrected, references adde

    Nation Brand Management, en fallstudie av Sverige och Tyskland

    Get PDF
    Purpose: The aim of this paper is to compare the Nation Branding initiatives of Sweden and Germany in order to identify important factors while navigating their Nation Brand. A framework has been developed on the basis of existing theory which has been tested on the objects of the case study. The purpose was to demonstrate possible empirical correlations not described by the theory. Finally the paper provides an analysis of the deduced theoretical framework which subsequently has been developed and expanded with the new theoretical aspects. Methodology: The paper presents the output of qualitative case study research of the Nation Branding initiatives of Sweden and Germany. An abductive approach was used whereby a deduced framework has been used which subsequently has been expanded through induction. Empirical foundation The empirical material consists of semi-structured interviews with persons from the respective initiatives and specialists in the field of Nation Branding, as well as information from the websites of the initiatives. Results The paper has contributed with the addition of three further factors: the learning organization, structure and multipliers which complement the existing theory

    Нормирование медицинского имущества лечебных учреждений Вооруженных сил Республики Беларусь в мирное время

    Get PDF
    ЗДРАВООХРАНЕНИЯ СЛУЖБЫЛЕКАРСТВЕННОГО ОБЕСПЕЧЕНИЯ СИСТЕМЫВОЕННАЯ МЕДИЦИНАБОЛЬНИЧНЫЕ СИСТЕМЫ МАТЕРИАЛЬНОГО ОБЕСПЕЧЕНИЯВОЕННОСЛУЖАЩИЕЗДРАВООХРАНЕНИЯ РЕСУРСОВ РАСПРЕДЕЛЕНИЕМЕДИЦИНСКОЕ ОБОРУДОВАНИЕ ДОЛГОВРЕМЕННОГО ПОЛЬЗОВАНИЯОБОРУДОВАНИЕ, АППАРАТУРА, ИНСТРУМЕНТ

    Modelling Deep Green tidal power plant using large eddy simulations and the actuator line method

    Get PDF
    The Deep Green technique for tidal power generation is suitable for moderate flows which is attractive since larger areas for tidal energy generation hereby can be used. It operates typically at mid-depth and can be seen as a “flying” kite with a turbine and generator attached underneath. It moves in a lying figure-eight path almost perpendicular to the tidal flow. Large eddy simulations and an adaption of the actuator line method (in order to describe arbitrary paths) are used to study the turbulent flow with and without Deep Green for a specific site. This methodology can in later studies be used for e.g. array analysis that include Deep Green interaction. It is seen that Deep Green creates a unique wake composed of two velocity deficit zones with increased velocity in each wake core. The flow has a tendency to be directed downwards which results in locally increased bottom shear. The persistence of flow disturbances of Deep Green can be scaled with its horizontal path width, Dy, with a velocity deficit of 5% at approximately 8–10Dy downstream of the power plant. The turbulence intensity and power deficit are approximately two times the undisturbed value and 10%, respectively, at 10Dy

    Quantification of Normal Cell Fraction and Copy Number Neutral LOH in Clinical Lung Cancer Samples Using SNP Array Data

    Get PDF
    Technologies based on DNA microarrays have the potential to provide detailed information on genomic aberrations in tumor cells. In practice a major obstacle for quantitative detection of aberrations is the heterogeneity of clinical tumor tissue. Since tumor tissue invariably contains genetically normal stromal cells, this may lead to a failure to detect aberrations in the tumor cells.Using SNP array data from 44 non-small cell lung cancer samples we have developed a bioinformatic algorithm that accurately models the fractions of normal and tumor cells in clinical tumor samples. The proportion of normal cells in combination with SNP array data can be used to detect and quantify copy number neutral loss-of-heterozygosity (CNNLOH) in the tumor cells both in crude tumor tissue and in samples enriched for tumor cells by laser capture microdissection.Genome-wide quantitative analysis of CNNLOH using the CNNLOH Quantifier method can help to identify recurrent aberrations contributing to tumor development in clinical tumor samples. In addition, SNP-array based analysis of CNNLOH may become important for detection of aberrations that can be used for diagnostic and prognostic purposes

    Tidal power plant simulations using large eddy simulation (LES) and the actuator line method (ALM)

    Get PDF
    The share of the renewable energy in the gobal energy mix is to be increased according to the sustainable development goals of the UN. Tidal energy can here potentially play a substantial role for the electric power generation. The tidal power plant Deep Green developed by Minesto uses a novel technology with a “flying” kite that, with its attached turbine, sweeps the tidal stream with a velocity several times higher than he mean flow. Eventually these power plants will form arrays requiring knowledge of (1) the interaction between individual power plants as well as (2) how the power plants and the arrays will influence the surrounding environment. The tidally oscillating turbulent boundary layer flow is in the present study analyzed using Large Eddy Simulations (LES) utilizing two different modeling techniques (pseudo-spectral and finite volume method). The boundary layer flow is analyzed both undisturbed and with a sweeping tidal power plant. The power plant is modeled using the Actuator Line Method (ALM). This method has been reformulated in order to be able to take arbitrary pathways of the actuator line into account. The results for the undisturbed flow simulations show, e.g., variations of the turbulence intensity depending on pre- or post-tidal peak flow for equivalent volume mean flow. The results for the modeled power plant show, e.g., how the wake flow downstream of the power plant that can be related to the size of the pathway size

    New evidence of increased risk of rhinitis in subjects with COPD: a longitudinal population study

    Get PDF
    BACKGROUND: The aim of this population-based study was to investigate the risk of developing noninfectious rhinitis (NIR) in subjects with chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS: This is a longitudinal population-based study comprising 3,612 randomly selected subjects from Gothenburg, Sweden, aged 25–75 years. Lung function was measured at baseline with spirometry and the included subjects answered a questionnaire on respiratory symptoms. At follow-up, the subjects answered a questionnaire with a response rate of 87%. NIR was defined as symptoms of nasal obstruction, nasal secretion, and/or sneezing attacks without having a cold, during the last 5 years. COPD was defined as a spirometry ratio of forced expiratory volume in 1 second divided by forced vital capacity (FEV(1)/FVC) <0.7. Subjects who reported asthma and NIR at baseline were excluded from the study. The odds ratios for developing NIR (ie, new-onset NIR) in relation to age, gender, body mass index, COPD, smoking, and atopy were calculated. RESULTS: In subjects with COPD, the 5-year incidence of NIR was significantly increased (10.8% vs 7.4%, P=0.005) and was higher among subjects aged >40 years. Smoking, atopy, and occupational exposure to gas, fumes, or dust were also associated with new-onset NIR. COPD, smoking, and atopy remained individual risk factors for new-onset NIR in the logistic regression analysis. CONCLUSIONS: This longitudinal population-based study of a large cohort showed that COPD is a risk factor for developing NIR. Smoking and atopy are also risk factors for NIR. The results indicate that there is a link present between upper and lower respiratory inflammation in NIR and COPD
    corecore