489 research outputs found

    A general approach to physical realization of unambiguous quantum-state discrimination

    Full text link
    We present a general scheme to realize the POVMs for the unambiguous discrimination of quantum states. For any set of pure states it enables us to set up a feasible linear optical circuit to perform their optimal discrimination, if they are prepared as single-photon states. An example of unknown states discrimination is discussed as the illustration of the general scheme.Comment: 9 pages, Latex fil

    Optimum measurement for unambiguously discriminating two mixed states: General considerations and special cases

    Full text link
    Based on our previous publication [U. Herzog and J. A. Bergou, Phys.Rev. A 71, 050301(R) (2005)] we investigate the optimum measurement for the unambiguous discrimination of two mixed quantum states that occur with given prior probabilities. Unambiguous discrimination of nonorthogonal states is possible in a probabilistic way, at the expense of a nonzero probability of inconclusive results, where the measurement fails. Along with a discussion of the general problem, we give an example illustrating our method of solution. We also provide general inequalities for the minimum achievable failure probability and discuss in more detail the necessary conditions that must be fulfilled when its absolute lower bound, proportional to the fidelity of the states, can be reached.Comment: Submitted to Journal of Physics:Conference Series (Proceedings of the 12th Central European Workshop on Quantum Optics, Ankara, June 2005

    Optimum unambiguous discrimination of two mixed quantum states

    Full text link
    We investigate generalized measurements, based on positive-operator-valued measures, and von Neumann measurements for the unambiguous discrimination of two mixed quantum states that occur with given prior probabilities. In particular, we derive the conditions under which the failure probability of the measurement can reach its absolute lower bound, proportional to the fidelity of the states. The optimum measurement strategy yielding the fidelity bound of the failure probability is explicitly determined for a number of cases. One example involves two density operators of rank d that jointly span a 2d-dimensional Hilbert space and are related in a special way. We also present an application of the results to the problem of unambiguous quantum state comparison, generalizing the optimum strategy for arbitrary prior probabilities of the states.Comment: final versio

    Optimum unambiguous identification of d unknown pure qudit states

    Full text link
    We address the problem of unambiguously identifying the state of a probe qudit with the state of one of d reference qudits. The reference states are assumed pure and linearly independent but we have no knowledge of them. The state of the probe qudit is assumed to coincide equally likely with either one of the d unknown reference states. We derive the optimum measurement strategy that maximizes the success probability of unambiguous identification and find that the optimum strategy is a generalized measurement. We give both the measurement operators and the optimum success probability explicitly. Technically, the problem we solve amounts to the optimum unambiguous discrimination of d known mixed quantum states.Comment: A reference has been included and a sign error has been corrected that propagated and affected the final result and is unfortunately also present in the printed journal versio
    corecore