440 research outputs found

    Recovering pyramid WS gain in non-common path aberration correction mode via deformable lens

    Full text link
    It is by now well known that pyramid based wavefront sensors, once in closed loop, have the capability to improve more and more the gain as the reference natural star image size is getting smaller on the pyramid pin. Especially in extreme adaptive optics applications, in order to correct the non-common path aberrations between the scientific and sensing channel, it is common use to inject a certain amount of offset wavefront deformation into the DM(s), departing at the same time the pyramid from the optimal working condition. In this paper we elaborate on the possibility to correct the low order non-common path aberrations at the pyramid wavefront sensor level by means of an adaptive refractive lens placed on the optical path before the pyramid itself, allowing the mitigation of the gain loss

    Combined Biologic Augmentation Strategies with Collagen Patch Graft, Microfractures, and Platelet Concentrate Injections Improve Functional and Structural Outcomes of Arthroscopic Revision Rotator Cuff Repair

    Get PDF
    Background: Arthroscopic revision rotator cuff repair (ARRCR) is challenging. Biologic strategies seem to be promising. The aim was to evaluate the effectiveness of the combination of microfractures of the greater tuberosity, augmentation with collagen patch graft, and platelet concentrate injections in ARRCR. Methods: A retrospective comparative study was conducted on patients that underwent ARRCR with a minimum follow-up of two years. Patients in the augmentation group underwent ARRCR combined with microfractures, collagen patch graft, and postoperative subacromial injections of platelet concentrate. A standard rotator cuff repair was performed in the control group. Primary outcome: Constant-Murley score (CMS). Secondary outcomes: disease-specific, health-related quality of life using the Disabilities of the Arm, Shoulder, and Hand (DASH) score; assessment of tendon integrity with magnetic resonance at least six months after surgery. Significance was set at p < 0.05. Results: Forty patients were included. Mean follow-up was 36.2 ± 8.7 months. The mean CMS was greater in the augmentation group (p = 0.022). No differences could be found for DASH score. Healing failure rate was higher in the control group (p = 0.002). Conclusion: Biologic augmentation of ARRCR using a combination of microfractures, collagen patch graft, and subacromial injections of platelet concentrate is an effective strategy in improving tendon healing rate. Level of evidence: retrospective cohort study, level III

    Alignment and preliminary outcomes of an ELT-size instrument to a very large telescope: LINC-NIRVANA at LBT

    Full text link
    LINC-NIRVANA (LN) is a high resolution, near infrared imager that uses a multiple field-of-view, layer-oriented, multi-conjugate AO system, consisting of four multi-pyramid wavefront sensors (two for each arm of the Large Binocular Telescope, each conjugated to a different altitude). The system employs up to 40 star probes, looking at up to 20 natural guide stars simultaneously. Its final goal is to perform Fizeau interferometric imaging, thereby achieving ELT-like spatial resolution (22.8 m baseline resolution). For this reason, LN is also equipped with a fringe tracker, a beam combiner and a NIR science camera, for a total of more than 250 optical components and an overall size of approximately 6x4x4.5 meters. This paper describes the tradeoffs evaluated in order to achieve the alignment of the system to the telescope. We note that LN is comparable in size to planned ELT instrumentation. The impact of such alignment strategies will be compared and the selected procedure, where the LBT telescope is, in fact, aligned to the instrument, will be described. Furthermore, results coming from early night-time commissioning of the system will be presented.Comment: 8 pages, 6 pages, AO4ELT5 Proceedings, 201

    Performance evaluation of a commercial protective coating through field-exposure tests on three stone substrates

    Get PDF
    In the last decades, there have been several studies on Cultural Heritage regarding the performance of protective and consolidating coatings for the prevention of decay. A coating must have several characteristics such as efficiency, breathability, and must be durable and reversible. In this research work, the performance of a commercial protective product (Fosbuild FBLE 200) was evaluated. This coating is composed of a TiO2 nanopowder dispersed in an aqueous solution of an acrylic polymer. The product, which exhibits depolluting, antimicrobial, water-repellent and self-cleaning properties, has been applied on three different lithotypes: Carrara marble, Noto stone, and Comiso stone. Field-exposure tests were carried out in two different outdoor environments (Catania and Palermo) in order to assess its suitability. Promising results were obtained for the Carrara marble after one year of exposure; however, a decrease in effectiveness was observed at the end of the second year

    A porous fibrous hyperelastic damage model for human periodontal ligament: Application of a microcomputerized tomography finite element model

    Get PDF
    The periodontal ligament (PDL) is a soft biological tissue that connects the tooth with the trabecular bone of the mandible. It plays a key role in load transmission and is primarily responsible for bone resorption and most common periodontal diseases. Although several numerical studies have analysed the biomechanical response of the PDL, most did not consider its porous fibrous structure, and only a few analysed damage to the PDL. This study presents an innovative numerical formulation of a porous fibrous hyperelastic damage material model for the PDL. The model considers two separate softening phenomena: fibre alignment during loading and fibre rupture. The parameters for the material model characterization were fitted using experimental data from the literature. Furthermore, the experimental tests used for characterization were computationally modelled to verify the material parameters. A finite element model of a portion of a human mandible, obtained by microcomputerized tomography, was developed, and the proposed constitutive model was implemented for the PDL. Our results confirm that damage to the PDL may occur mainly because of overpressure of the interstitial fluid, while large forces must be applied to damage the PDL fibrous network. Moreover, this study clarifies some aspects of the relationship between PDL damage and the bone remodelling process

    Long COVID in Children and Adolescents

    Get PDF
    Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has caused significant mortality and morbidity worldwide. In children, the acute SARS-CoV-2 infection is often asymptomatic or paucisymptomatic, and life-threatening complications are rare. Nevertheless, there are two long-term consequences of SARS-CoV-2 infection in children that raise concern: multisystem inflammatory syndrome in children (MIS-C) and long COVID. While the understanding and the experience regarding the acute phase of SARS-CoV-2 infection have remarkably increased over time, scientific and clinical research is still exploring the long-term effects of COVID-19. In children, data on long COVID are scant. Reports are conflicting regarding its prevalence, duration and impact on daily life. This narrative review explored the latest literature regarding long COVID-19 in the pediatric population. We showed that long COVID in children might be a relevant clinical problem. In most cases, the prognosis is good, but some children may develop long-term symptoms with a significant impact on their daily life. The paucity of studies on long COVID, including a control group of children not infected by SARS-CoV-2, prevents us from drawing firm conclusions. Whether the neuropsychiatric symptoms widely observed in children and adolescents with long COVID are the consequence of SARS-CoV-2 infection or are due to the tremendous stress resulting from the restrictions and the pandemics is still not clear. In both cases, psychological support can play a fundamental role in managing COVID pandemics in children. More knowledge is needed to share a standardized definition of the syndrome and improve its management and treatment

    Persistent topology for natural data analysis - A survey

    Full text link
    Natural data offer a hard challenge to data analysis. One set of tools is being developed by several teams to face this difficult task: Persistent topology. After a brief introduction to this theory, some applications to the analysis and classification of cells, lesions, music pieces, gait, oil and gas reservoirs, cyclones, galaxies, bones, brain connections, languages, handwritten and gestured letters are shown

    Magnetic susceptibility of EuTe/PbTe Heisenberg superlattices: experimental and theoretical studies

    Full text link
    We report results on the temperature dependence of the susceptibilities of a set of MBE-grown short-period EuTe/PbTe antiferromagnetic superlattices having different EuTe layer thicknesses. In-plane and orthogonal susceptibilities have been measured and display a strong anisotropy at low temperature, confirming the occurrence of a magnetic phase transition in the thicker samples, as seen also in neutron diffraction studies. We suggest that dipolar interactions stabilize antiferromagnetic long-range order in an otherwise isotropic system and we present numerical and analytical results for the low-temperature orthogonal susceptibility.Comment: 30 pages, 8 ps figures, RevTe

    Renormalization Group Approach to the Coulomb Pseudopotential for C_{60}

    Full text link
    A numerical renormalization group technique recently developed by one of us is used to analyse the Coulomb pseudopotential (μ∗{\mu^*}) in C60{{\rm C}_{60}} for a variety of bare potentials. We find a large reduction in μ∗{\mu^*} due to intraball screening alone, leading to an interesting non-monotonic dependence of μ∗{\mu^*} on the bare interaction strength. We find that μ∗{\mu^*} is positive for physically reasonable bare parameters, but small enough to make the electron-phonon coupling a viable mechanism for superconductivity in alkali-doped fullerides. We end with some open problems.Comment: 12 pages, latex, 7 figures available from [email protected]
    • …
    corecore