111 research outputs found

    The Professor Behind the Screen: Four Case Studies of Online Teaching in Business.

    Full text link
    Although online education in postsecondary education is not new, the number of online courses and programs has grown especially fast in recent years. This shift toward online education has drawn strong supporters as well as critics: some see promise in the immediate and flexible nature of the online environment, while others question the quality of online courses. The debate, in fact, hinges on teaching, just as in face-to-face settings. However, little systematic research has investigated online teaching through the eyes of instructors, and literature about online teaching is based largely on speculation and lacks complexity and depth. The central aim in this study was to examine online teaching from the perspectives of instructors themselves in order to understand pedagogical decisions, views of online education, and environmental factors influencing teaching. Case studies of four instructors at two institutions were developed. Each instructor taught a fully online, asynchronous undergraduate business course during Fall 2013. I gained access to course websites to view course materials and observe communication between the instructor and students. During the semester, I interviewed each instructor four times using a semi-structured interview format. The four case studies were composed separately, each with thick description that helped create a detailed and contextualized narrative. In addition to the case studies, I present a crosscase analysis describing themes and offering insights into the constraints and affordances of teaching online. The cross-case analysis contributed to the development of a theoretical framework for studying online teaching. Specifically, I propose an ecology model of online teaching accounting for contextual factors (e.g., institutional setting, instructor background) shaping teaching decisions, experiences, and beliefs in the asynchronous online teaching environment. This inquiry has meaningful implications for practice and research. First, knowing how instructors design courses and think about the online teaching-learning environment can inform the work of faculty development staff who train and support instructors and shape institutional culture related to teaching. Second, insights from this exploratory study can strengthen future research seeking to answer evaluative or causal questions by revealing essential variables to consider when examining the processes and outcomes of online education.PhDHigher EducationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111535/1/inbe_1.pd

    Heart sparing radiotherapy techniques in breast cancer: A focus on deep inspiration breath hold

    Get PDF
    Adjuvant radiation therapy is a critical component of breast cancer management. However, when breast cancer patients receive incidental radiation to the heart, there is an increased risk of cardiac disease and mortality. This is most common for patients with left-sided breast cancers and those receiving nodal irradiation as part of treatment. The overall risk of cardiac toxicity increases 4-16% with each Gray increase in mean heart radiation dose, with data suggesting that no lower limit exists which would eliminate cardiac risk entirely. Radiation techniques have improved over time, leading to lower cardiac radiation exposure than in the past. This decline is expected to reduce the incidence of radiation-induced heart dysfunction in patients. Deep inspiration breath hold (DIBH) is one such technique that was developed to reduce the risk of cardiac death and coronary events. DIBH is a non-invasive approach that capitalizes on the natural physiology of the respiratory cycle to increase the distance between the heart and the therapeutic target throughout the course of radiation therapy. DIBH has been shown to decrease the mean incidental radiation doses to the heart and left anterior descending coronary artery by approximately 20-70%. In this review, we summarize different techniques for DIBH and discuss recent data on this technique

    Introduction: Gender Equity in Abrahamic Circumcision:Why or Why Not?

    Get PDF
    Taking Richard Shweder’s (2021) article ‘The prosecution of Dawoodi Bohra women: some reasonable doubts’ as a target piece for discussion, the aim of this issue is to better understand these limitations. In the article, Shweder proposes that some forms of FGC be legalized, arguing that the form of FGC practiced among Dawoodi Bohra Muslims is less invasive than typical circumcision of boys and that, among the Bohra, FGC is a religiously meaningful ritual. This proposal implies that girls should have the same rights to cultural and/or religious identity as circumcised boys. It is a controversial proposal insofar as it directly challenges the central tenet of global campaigns to end FGC, such as target 5.3 in the United Nations Sustainable Development Goal: that girls can only be empowered by protecting them from being subjected to a fear-inducing and painful experience. This issue examines both directions within the equivalence argument: the plausibility of legalization of FGC, but also the possibility that boys require protection from forms of male genital cutting. This second possibility – of proposing an age limit or ban on boy circumcision – is also controversial, particularly at a time in which there is growing concern about anti-Semitism and Islamophobia. This may, in part, explain worldwide reluctance by otherwise interventionist policy makers to act upon the similarities of boy and girl circumcision

    Advances in screening for radiation-associated cardiotoxicity in cancer patients

    Get PDF
    PURPOSE OF REVIEW: Radiation is foundational to the treatment of cancer and improves overall survival. Yet, it is important to recognize the potential cardiovascular effects of radiation therapy and how to best minimize or manage them. Screening-both through imaging and with biomarkers-can potentially identify cardiovascular effects early, allowing for prompt initiation of treatment to mitigate late effects. RECENT FINDINGS: Cardiac echocardiography, magnetic resonance imaging (MRI), computed tomography, and measurements of troponin and natriuretic peptides serve as the initial screening tests of choice for RICD. Novel imaging applications, including positron emission tomography and specific MRI parameters, and biomarker testing, including myeloperoxidase, growth differentiation factor 15, galectin 3, micro-RNA, and metabolomics, hold promise for earlier detection and more specific characterization of RICD. Advances in imaging and novel applications of biomarkers have potential to identify subclinical RICD and may reveal opportunities for early intervention. Further research is needed to elucidate optimal imaging screening modalities, biomarkers, and surveillance strategies

    Cardiac magnetic resonance for early detection of radiation therapy-induced cardiotoxicity in a small animal model

    Get PDF
    BACKGROUND: Over half of all cancer patients receive radiation therapy (RT). However, radiation exposure to the heart can cause cardiotoxicity. Nevertheless, there is a paucity of data on RT-induced cardiac damage, with limited understanding of safe regional RT doses, early detection, prevention and management. A common initial feature of cardiotoxicity is asymptomatic dysfunction, which if left untreated may progress to heart failure. The current paradigm for cardiotoxicity detection and management relies primarily upon assessment of ejection fraction (EF). However, cardiac injury can occur without a clear change in EF. OBJECTIVES: To identify magnetic resonance imaging (MRI) markers of early RT-induced cardiac dysfunction. METHODS: We investigated the effect of RT on global and regional cardiac function and myocardial T1/T2 values at two timepoints post-RT using cardiac MRI in a rat model of localized cardiac RT. Rats who received image-guided whole-heart radiation of 24Gy were compared to sham-treated rats. RESULTS: The rats maintained normal global cardiac function post-RT. However, a deterioration in strain was particularly notable at 10-weeks post RT, and changes in circumferential strain were larger than changes in radial or longitudinal strain. Compared to sham, circumferential strain changes occurred at the basal, mid-ventricular and apical levels (p\u3c0.05 for all at both 8-weeks and 10-weeks post-RT), most of the radial strain changes occurred at the mid-ventricular (p=0.044 at 8-weeks post-RT) and basal (p=0.018 at 10-weeks post-RT) levels, and most of the longitudinal strain changes occurred at the apical (p=0.002 at 8-weeks post-RT) and basal (p=0.035 at 10-weeks post-RT) levels. Regionally, lateral myocardial segments showed the greatest worsening in strain measurements, and histologic changes supported these findings. Despite worsened myocardial strain post-RT, myocardial tissue displacement measures were maintained, or even increased. T1/T2 measurements showed small non-significant changes post-RT compared to values in non-irradiated rats. CONCLUSIONS: Our findings suggest MRI regional myocardial strain is a sensitive imaging biomarker for detecting RT-induced subclinical cardiac dysfunction prior to compromise of global cardiac function

    Recent advances in serum biomarkers for risk stratification and patient management in cardio-oncology

    Get PDF
    PURPOSE OF REVIEW: Following significant advancements in cancer therapeutics and survival, the risk of cancer therapy-related cardiotoxicity (CTRC) is increasingly recognized. With ongoing efforts to reduce cardiovascular morbidity and mortality in cancer patients and survivors, cardiac biomarkers have been studied for both risk stratification and monitoring during and after therapy to detect subclinical disease. This article will review the utility for biomarker use throughout the cancer care continuum. RECENT FINDINGS: A recent meta-analysis shows utility for troponin in monitoring patients at risk for CTRC during cancer therapy. The role for natriuretic peptides is less clear but may be useful in patients receiving proteasome inhibitors. Early studies explore use of myeloperoxidase, growth differentiation factor 15, galectin 3, micro-RNA, and others as novel biomarkers in CTRC. Biomarkers have potential to identify subclinical CTRC and may reveal opportunities for early intervention. Further research is needed to elucidate optimal biomarkers and surveillance strategies

    Myocardial contractility pattern characterization in radiation-induced cardiotoxicity using magnetic resonance imaging: A pilot study with ContractiX

    Get PDF
    Radiation therapy (RT) plays an integral role in treating thoracic cancers, despite the risk of radiation-induced cardiotoxicity. We hypothesize that our newly developed magnetic resonance imaging (MRI)-based contractility index (ContractiX) is a sensitive marker for early detection of RT-induced cardiotoxicity in a preclinical rat model of thoracic cancer RT. Adult salt-sensitive rats received image-guided heart RT and were imaged with MRI at 8 weeks and 10 weeks post-RT or sham. The MRI exam included cine and tagging sequences to measure left-ventricular ejection fraction (LVEF), mass, myocardial strain, and ContractiX. Furthermore, ventricular torsion, diastolic strain rate, and mechanical dyssynchrony were measured. Statistical analyses were performed between the sham, 8 weeks post-RT, and 10 weeks post-RT MRI parameters. The results showed that both LVEF and myocardial mass increased post-RT. Peak systolic strain and ContractiX significantly decreased post-RT, with a more relative reduction in ContractiX compared to strain. ContractiX showed an inverse nonlinear relationship with LVEF and continuously decreased with time post-RT. While early diastolic strain rate and mechanical dyssynchrony significantly changed post-RT, ventricular torsion changes were not significant post-RT. In conclusion, ContractiX measured via non-contrast MRI is a sensitive early marker for the detection of subclinical cardiac dysfunction post-RT, and it is superior to other MRI cardiac measures

    Sirtuin3 ensures the metabolic plasticity of neurotransmission during glucose deprivation

    Get PDF
    Neurotransmission is an energetically expensive process that underlies cognition. During intense electrical activity or dietary restrictions, the glucose level in the brain plummets, forcing neurons to utilize alternative fuels. However, the molecular mechanisms of neuronal metabolic plasticity remain poorly understood. Here, we demonstrate that glucose-deprived neurons activate the CREB and PGC1α transcriptional program, which induces expression of the mitochondrial deacetylase Sirtuin 3 (Sirt3) both in vitro and in vivo. We show that Sirt3 localizes to axonal mitochondria and stimulates mitochondrial oxidative capacity in hippocampal nerve terminals. Sirt3 plays an essential role in sustaining synaptic transmission in the absence of glucose by providing metabolic support for the retrieval of synaptic vesicles after release. These results demonstrate that the transcriptional induction of Sirt3 facilitates the metabolic plasticity of synaptic transmission

    Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs

    Get PDF
    The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study we have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ∼24 mg m-2 day-1 started orally in the drinking water at 7 days after irradiation and continued to ≥150 days) mitigated late effects in the lungs and kidneys after 12.5 Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 days after 13 Gy leg-out PBI. Furthermore lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg-1 day-1 from days 1-14) which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, we mitigated acute and delayed radiation injuries in multiple organs

    X-ray and MR contrast bearing nanoparticles enhance the therapeutic response of image-guided radiation therapy for oral cancer

    Get PDF
    INTRODUCTION: Radiation therapy for head and neck squamous cell carcinoma is constrained by radiotoxicity to normal tissue. We demonstrate 100 nm theranostic nanoparticles for image-guided radiation therapy planning and enhancement in rat head and neck squamous cell carcinoma models. METHODS: PEG conjugated theranostic nanoparticles comprising of Au nanorods coated with Gadolinium oxide layers were tested for radiation therapy enhancement in 2D cultures of OSC-19-GFP-luc cells, and orthotopic tongue xenografts in male immunocompromised Salt sensitive or SS rats via both intratumoral and intravenous delivery. The radiation therapy enhancement mechanism was investigated. RESULTS: Theranostic nanoparticles demonstrated both X-ray/magnetic resonance contrast in a dose-dependent manner. Magnetic resonance images depicted optimal tumor-to-background uptake at 4 h post injection. Theranostic nanoparticle + Radiation treated rats experienced reduced tumor growth compared to controls, and reduction in lung metastasis. CONCLUSIONS: Theranostic nanoparticles enable preprocedure radiotherapy planning, as well as enhance radiation treatment efficacy for head and neck tumors
    • …
    corecore