177 research outputs found

    Eradication of multidrug-resistant Acinetobacter baumannii in a female patient with total hip arthroplasty, with debridement and retention: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Multidrug-resistant <it>Acinetobacter baumannii </it>has become a significant cause of healthcare-associated infections, but few reports have addressed <it>Acinetobacter baumannii </it>infections associated with orthopedic devices. The current recommended treatment for complicated infections due to orthopedic devices, including resistant gram-negative rods, consists of antimicrobial therapy with debridement and removal of implants.</p> <p>Case presentation</p> <p>The patient, a 47-year-old woman, had previously had a prior total hip arthroplasty at 16 years of age for a complex femoral neck fracture, and multiple subsequent revisions. This time, she underwent a fifth revision secondary to pain. Surgery was complicated by hypotension resulting in transfer to the intensive care unit and prolonged respiratory failure. She received peri-operative cefazolin but postoperatively developed surgical wound drainage requiring debridement of a hematoma. Cultures of this grew ampicillin-sensitive <it>Enterococcus </it>and <it>Acinetobacter baumannii </it>(sensitive only to amikacin and imipenem). The patient was started on imipenem. Removal of the total hip arthroplasty was not recommended because of the recent surgical complications, and the patient was eventually discharged home. She was seen weekly for laboratory tests and examinations and, after 4 months of therapy, the imipenem was discontinued. She did well clinically for 7 months before recurrent pain led to removal of the total hip arthroplasty. Intra-operative cultures grew ampicillin-sensitive <it>Enterococcus </it>and coagulase-negative <it>Staphylococcus </it>but no multidrug-resistant <it>Acinetobacter baumannii</it>. The patient received ampicillin for 8 weeks and had not had recurrent infection at the time of writing, 37 months after discontinuing imipenem.</p> <p>Conclusion</p> <p>We describe the successful treatment of an acute infection from multidrug-resistant <it>Acinetobacter baumannii </it>with debridement and retention of the total hip arthroplasty, using monotherapy with imipenem. This case challenges the general assumption that all orthopedic-device infections due to multidrug-resistant gram-negative organisms will require hardware removal. Further studies are needed to determine if organisms such as multidrug-resistant <it>Acinetobacter baumannii </it>are amenable to treatment with hardware retention.</p

    Eradication of multidrug-resistant Acinetobacter baumannii in a female patient with total hip arthroplasty, with debridement and retention: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Multidrug-resistant <it>Acinetobacter baumannii </it>has become a significant cause of healthcare-associated infections, but few reports have addressed <it>Acinetobacter baumannii </it>infections associated with orthopedic devices. The current recommended treatment for complicated infections due to orthopedic devices, including resistant gram-negative rods, consists of antimicrobial therapy with debridement and removal of implants.</p> <p>Case presentation</p> <p>The patient, a 47-year-old woman, had previously had a prior total hip arthroplasty at 16 years of age for a complex femoral neck fracture, and multiple subsequent revisions. This time, she underwent a fifth revision secondary to pain. Surgery was complicated by hypotension resulting in transfer to the intensive care unit and prolonged respiratory failure. She received peri-operative cefazolin but postoperatively developed surgical wound drainage requiring debridement of a hematoma. Cultures of this grew ampicillin-sensitive <it>Enterococcus </it>and <it>Acinetobacter baumannii </it>(sensitive only to amikacin and imipenem). The patient was started on imipenem. Removal of the total hip arthroplasty was not recommended because of the recent surgical complications, and the patient was eventually discharged home. She was seen weekly for laboratory tests and examinations and, after 4 months of therapy, the imipenem was discontinued. She did well clinically for 7 months before recurrent pain led to removal of the total hip arthroplasty. Intra-operative cultures grew ampicillin-sensitive <it>Enterococcus </it>and coagulase-negative <it>Staphylococcus </it>but no multidrug-resistant <it>Acinetobacter baumannii</it>. The patient received ampicillin for 8 weeks and had not had recurrent infection at the time of writing, 37 months after discontinuing imipenem.</p> <p>Conclusion</p> <p>We describe the successful treatment of an acute infection from multidrug-resistant <it>Acinetobacter baumannii </it>with debridement and retention of the total hip arthroplasty, using monotherapy with imipenem. This case challenges the general assumption that all orthopedic-device infections due to multidrug-resistant gram-negative organisms will require hardware removal. Further studies are needed to determine if organisms such as multidrug-resistant <it>Acinetobacter baumannii </it>are amenable to treatment with hardware retention.</p

    Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing reports of carbapenem resistant <it>Acinetobacter baumannii </it>infections are of serious concern. Reliable susceptibility testing results remains a critical issue for the clinical outcome. Automated systems are increasingly used for species identification and susceptibility testing. This study was organized to evaluate the accuracies of three widely used automated susceptibility testing methods for testing the imipenem susceptibilities of <it>A. baumannii </it>isolates, by comparing to the validated test methods.</p> <p>Methods</p> <p>Selected 112 clinical isolates of <it>A. baumanii </it>collected between January 2003 and May 2006 were tested to confirm imipenem susceptibility results. Strains were tested against imipenem by the reference broth microdilution (BMD), disk diffusion (DD), Etest, BD Phoenix, MicroScan WalkAway and Vitek 2 automated systems. Data were analysed by comparing the results from each test method to those produced by the reference BMD test.</p> <p>Results</p> <p>MicroScan performed true identification of all <it>A. baumannii </it>strains while Vitek 2 unidentified one strain, Phoenix unidentified two strains and misidentified two strains. Eighty seven of the strains (78%) were resistant to imipenem by BMD. Etest, Vitek 2 and BD Phoenix produced acceptable error rates when tested against imipenem. Etest showed the best performance with only two minor errors (1.8%). Vitek 2 produced eight minor errors(7.2%). BD Phoenix produced three major errors (2.8%). DD produced two very major errors (1.8%) (slightly higher (0.3%) than the acceptable limit) and three major errors (2.7%). MicroScan showed the worst performance in susceptibility testing with unacceptable error rates; 28 very major (25%) and 50 minor errors (44.6%).</p> <p>Conclusion</p> <p>Reporting errors for <it>A. baumannii </it>against imipenem do exist in susceptibility testing systems. We suggest clinical laboratories using MicroScan system for routine use should consider using a second, independent antimicrobial susceptibility testing method to validate imipenem susceptibility. Etest, whereever available, may be used as an easy method to confirm imipenem susceptibility.</p

    In-Vitro Activity of Polymyxin B, Rifampicin, Tigecycline Alone and in Combination against Carbapenem-Resistant Acinetobacter baumannii in Singapore

    Get PDF
    OBJECTIVE: Carbapenem-resistant Acinetobacter baumannii (CR-AB) is an emerging cause of nosocomial infections worldwide. Combination therapy may be the only viable option until new antibiotics become available. The objective of this study is to identify potential antimicrobial combinations against CR-AB isolated from our local hospitals. METHODS: AB isolates from all public hospitals in Singapore were systematically collected between 2006 and 2007. MICs were determined according to CLSI guidelines. All CR-AB isolates were genotyped using a PCR-based method. Clonal relationship was elucidated. Time-kill studies (TKS) were conducted with polymyxin B, rifampicin and tigecycline alone and in combination using clinically relevant (achievable) unbound concentrations. RESULTS: 31 CR AB isolates were identified. They are multidrug-resistant, but are susceptible to polymyxin B. From clonal typing, 8 clonal groups were identified and 11 isolates exhibited clonal diversity. In single TKS, polymyxin B, rifampicin and tigecycline alone did not exhibit bactericidal activity at 24 hours. In combination TKS, polymyxin plus rifampicin, polymyxin B plus tigecycline and tigecycline plus rifampicin exhibited bactericidal killing in 13/31, 9/31 and 7/31 isolates respectively at 24 hours. Within a clonal group, there may be no consensus with the types of antibiotics combinations that could still kill effectively. CONCLUSION: Monotherapy with polymyxin B may not be adequate against polymyxin B susceptible AB isolates. These findings demonstrate that in-vitro synergy of antibiotic combinations in CR AB may be strain dependant. It may guide us in choosing a pre-emptive therapy for CR AB infections and warrants further investigations

    The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool

    Get PDF
    Outbreaks of hospital infections caused by multidrug resistant Acinetobacter baumannii strains are of increasing concern worldwide. Although it has been reported that particular outbreak strains are geographically widespread, little is known about the diversity and phylogenetic relatedness of A. baumannii clonal groups. Sequencing of internal portions of seven housekeeping genes (total 2,976 nt) was performed in 154 A. baumannii strains covering the breadth of known diversity and including representatives of previously recognized international clones, and in 19 representatives of other Acinetobacter species. Restricted amounts of diversity and a star-like phylogeny reveal that A. baumannii is a genetically compact species that suffered a severe bottleneck in the recent past, possibly linked to a restricted ecological niche. A. baumannii is neatly demarcated from its closest relative (genomic species 13TU) and other Acinetobacter species. Multilocus sequence typing analysis demonstrated that the previously recognized international clones I to III correspond to three clonal complexes, each made of a central, predominant genotype and few single locus variants, a hallmark of recent clonal expansion. Whereas antimicrobial resistance was almost universal among isolates of these and a novel international clone (ST15), isolates of the other genotypes were mostly susceptible. This dichotomy indicates that antimicrobial resistance is a major selective advantage that drives the ongoing rapid clonal expansion of these highly problematic agents of nosocomial infections

    Multidrug resistant Acinetobacter baumannii--the role of AdeABC (RND family) efflux pump in resistance to antibiotics.

    Full text link
    corecore