82 research outputs found

    Development of an advanced SiPM camera for the Large Size Telescope of the Cherenkov Telescope Array Observatory

    No full text
    Silicon photomultipliers (SiPMs) have become the baseline choice for cameras of the small-sized telescopes (SSTs) of the Cherenkov Telescope Array (CTA). On the other hand, SiPMs are relatively new to the field and covering large surfaces and operating at high data rates still are challenges to outperform photomultipliers (PMTs). The higher sensitivity in the near infra-red and longer signals compared to PMTs result in higher night sky background rate for SiPMs. However, the robustness of the SiPMs represents a unique opportunity to ensure long-term operation with low maintenance and better duty cycle than PMTs. The proposed camera for large size telescopes will feature 0.05◦ pixels, low power and fast front-end electronics and a fully digital readout. In this work, we present the status of dedicated simulations and data analysis for the performance estimation. The design features and the different strategies identified, so far, to tackle the demanding requirements and the improved performance are described.ISSN:1824-803

    Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment

    No full text
    Abstract We study damping signatures at the Jiangmen Underground Neutrino Observatory (JUNO), a medium-baseline reactor neutrino oscillation experiment. These damping signatures are motivated by various new physics models, including quantum decoherence, nu(3) decay, neutrino absorption, and wave packet decoherence. The phenomenological effects of these models can be characterized by exponential damping factors at the probability level. We assess how well JUNO can constrain these damping parameters and how to disentangle these different damping signatures at JUNO. Compared to current experimental limits, JUNO can significantly improve the limits on tau(3)/m(3) in the nu(3) decay model, the width of the neutrino wave packet sigma(x), and the intrinsic relative dispersion of neutrino momentum sigma(rel)

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant tt \textrm{t}\overline{\textrm{t}} background. A cross section of 79.2±0.9(stat)8.0+7.7(syst)±1.2(lumi) 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.[graphic not available: see fulltext

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceMeasurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant tt \textrm{t}\overline{\textrm{t}} background. A cross section of 79.2±0.9(stat)8.0+7.7(syst)±1.2(lumi) 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.[graphic not available: see fulltext

    Probing heavy Majorana neutrinos and the Weinberg operator through vector boson fusion processes in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision data set recorded at s=\sqrt{s} = 13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb1^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ\mu\mu Majorana neutrino mass of 10.8 GeV.The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision dataset recorded at s=13  TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138  fb−1. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV–25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ Majorana neutrino mass of 10.8 GeV.The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision data set recorded at s\sqrt{s} = 13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb1^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ\mu\mu Majorana neutrino mass of 10.8 GeV

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Observation of the Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- decay and studies of the Ξb0\Xi_\mathrm{b}^{\ast{}0} baryon in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    The first observation of the decay Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- and measurement of the branching ratio of Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- to Ξb\Xi^-_\mathrm{b}\to J/ψ\psiΞ\Xi^- are presented. The J/ψ\psi and ψ\psi(2S) mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at s\sqrt{s} = 13 TeV in 2016-2018, corresponding to an integrated luminosity of 140 fb1^{-1}. The branching fraction ratio is measured to be B\mathcal{B}(Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^-)/B\mathcal{B}(Ξb\Xi^-_\mathrm{b}\to J/ψ\psiΞ\Xi^-) = 0.840.19+0.21^{+0.21}_{-0.19} (stat) ±\pm 0.10 (syst) ±\pm 0.02 (B\mathcal{B}), where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the Ξb0\Xi_\mathrm{b}^{\ast{}0} baryon mass and natural width are also presented, using the Ξbπ+\Xi_\mathrm{b}^-\pi^+ final state, where the Ξb\Xi^-_\mathrm{b} baryon is reconstructed through the decays J/ψΞ\psi \Xi^-, ψ\psi(2S)Ξ\Xi^-, J/ψΛ\psi \LambdaK^-, and J/ψΣ0\psi \Sigma^0K^-. Finally, the fraction of the Ξb\Xi^-_\mathrm{b} baryons produced from Ξb0\Xi_\mathrm{b}^{\ast{}0} decays is determined

    Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at s\sqrt{s} = 13 TeV corresponding to an integrated luminosity of 138 fb1^{-1} recorded at the LHC in 2016-2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, τ\tau leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 2×\times103^{-3}

    Search for stealth supersymmetry in final states with two photons, jets, and low missing transverse momentum in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe results of a search for stealth supersymmetry in final states with two photons and jets, targeting a phase space region with low missing transverse momentum (pTmissp_\text{T}^\text{miss}), are reported. The study is based on a sample of proton-proton collisions at s\sqrt{s} =13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb1^{-1}. As LHC results continue to constrain the parameter space of the minimal supersymmetric standard model, the low pTmissp_\text{T}^\text{miss} regime is increasingly valuable to explore. To estimate the backgrounds due to standard model processes in such events, we apply corrections derived from simulation to an estimate based on a control selection in data. The results are interpreted in the context of simplified stealth supersymmetry models with gluino and squark pair production. The observed data are consistent with the standard model predictions, and gluino (squark) masses of up to 2150 (1850) GeV are excluded at the 95% confidence level
    corecore