30 research outputs found

    An Intermittent Live Cell Imaging Screen for siRNA Enhancers and Suppressors of a Kinesin-5 Inhibitor

    Get PDF
    Kinesin-5 (also known as Eg5, KSP and Kif11) is required for assembly of a bipolar mitotic spindle. Small molecule inhibitors of Kinesin-5, developed as potential anti-cancer drugs, arrest cell in mitosis and promote apoptosis of cancer cells. We performed a genome-wide siRNA screen for enhancers and suppressors of a Kinesin-5 inhibitor in human cells to elucidate cellular responses, and thus identify factors that might predict drug sensitivity in cancers. Because the drug's actions play out over several days, we developed an intermittent imaging screen. Live HeLa cells expressing GFP-tagged histone H2B were imaged at 0, 24 and 48 hours after drug addition, and images were analyzed using open-source software that incorporates machine learning. This screen effectively identified siRNAs that caused increased mitotic arrest at low drug concentrations (enhancers), and vice versa (suppressors), and we report siRNAs that caused both effects. We then classified the effect of siRNAs for 15 genes where 3 or 4 out of 4 siRNA oligos tested were suppressors as assessed by time lapse imaging, and by testing for suppression of mitotic arrest in taxol and nocodazole. This identified 4 phenotypic classes of drug suppressors, which included known and novel genes. Our methodology should be applicable to other screens, and the suppressor and enhancer genes we identified may open new lines of research into mitosis and checkpoint biology

    Functional Characterisation and Drug Target Validation of a Mitotic Kinesin-13 in Trypanosoma brucei

    Get PDF
    Mitotic kinesins are essential for faithful chromosome segregation and cell proliferation. Therefore, in humans, kinesin motor proteins have been identified as anti-cancer drug targets and small molecule inhibitors are now tested in clinical studies. Phylogenetic analyses have assigned five of the approximately fifty kinesin motor proteins coded by Trypanosoma brucei genome to the Kinesin-13 family. Kinesins of this family have unusual biochemical properties because they do not transport cargo along microtubules but are able to depolymerise microtubules at their ends, therefore contributing to the regulation of microtubule length. In other eukaryotic genomes sequenced to date, only between one and three Kinesin-13s are present. We have used immunolocalisation, RNAi-mediated protein depletion, biochemical in vitro assays and a mouse model of infection to study the single mitotic Kinesin-13 in T. brucei. Subcellular localisation of all five T. brucei Kinesin-13s revealed distinct distributions, indicating that the expansion of this kinesin family in kinetoplastids is accompanied by functional diversification. Only a single kinesin (TbKif13-1) has a nuclear localisation. Using active, recombinant TbKif13-1 in in vitro assays we experimentally confirm the depolymerising properties of this kinesin. We analyse the biological function of TbKif13-1 by RNAi-mediated protein depletion and show its central role in regulating spindle assembly during mitosis. Absence of the protein leads to abnormally long and bent mitotic spindles, causing chromosome mis-segregation and cell death. RNAi-depletion in a mouse model of infection completely prevents infection with the parasite. Given its essential role in mitosis, proliferation and survival of the parasite and the availability of a simple in vitro activity assay, TbKif13-1 has been identified as an excellent potential drug target

    KSP Mitotic Spindle Motor Protein

    No full text

    The discovery and development of Eg5 inhibitors for the clinic

    No full text
    The mitotic kinesin Eg5 (also known as kinesin spindle protein, KSP, Kif11, a member of the kinesin-5 family) represents an attractive oncology drug target in the ongoing development of anti-mitotic drugs that selectively block mitosis through disruption to the mitotic spindle. In this state-of-the-art review, we outline the progress that has been made in the development of Eg5 inhibitors for clinical use. We evaluate the preclinical development and attributes of key Eg5 inhibitors that have undergone clinical evaluation or extensive preclinical optimisation, and discuss the medicinal chemistry strategies utilised in their design to overcome the challenges encountered during lead optimisation. We critically analyse the progress that has been made towards delivering clinical benefits, and the wider implications this has in the utility of mitotic kinesin inhibitors as prospective oncology drugs
    corecore