35 research outputs found

    Identification of a reference gene for the quantification of mRNA and miRNA expression during skin wound healing

    No full text
    <p><b><i>Aim:</i></b> Wound healing is a coordinated process to restore tissue homeostasis and reestablish the protective barrier of the skin. miRNAs may modulate the expression of target genes to contribute to repair processes, but due to the complexity of the tissue it is challenging to quantify gene expression during the distinct phases of wound repair. Here, we aimed to identify a common reference gene to quantify changes in miRNA and mRNA expression during skin wound healing. <b><i>Methods:</i></b> Quantitative real-time PCR and bioinformatic analysis tools were used to identify suitable reference genes during skin repair and their reliability was tested by studying the expression of mRNAs and miRNAs. <b><i>Results:</i></b> Morphological assessment of wounds showed that the injury model recapitulates the distinct phases of skin repair. Non-degraded RNA could be isolated from skin and wounds and used to study the expression of non-coding small nuclear RNAs during wound healing. Among those, <i>RNU6B</i> was most constantly expressed during skin repair. Using this reference gene we could confirm the transient upregulation of IL-1β and PTPRC/CD45 during the early phase as well as the increased expression of collagen type I at later stages of repair and validate the differential expression of miR-204, miR-205, and miR-31 in skin wounds. In contrast to <i>Gapdh</i> the normalization to multiple reference genes gave a similar outcome. <b><i>Conclusion:</i></b> <i>RNU6B</i> is an accurate alternative normalizer to quantify mRNA and miRNA expression during the distinct phases of skin wound healing when analysis of multiple reference genes is not feasible.</p

    Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain

    No full text
    G protein-coupled receptors (GPCRs) are important regulators of cellular signaling processes. Within the large family of rhodopsin-like receptors, those binding to biogenic amines form a discrete subgroup. Activation of biogenic amine receptors leads to transient changes of intracellular Ca(2+) -([Ca(2+) ]i ) or 3',5'-cyclic adenosine monophosphate ([cAMP]i ) concentrations. Both second messengers modulate cellular signaling processes and thereby contribute to long-lasting behavioral effects in an organism. In vivo pharmacology has helped reveal the functional effects of different biogenic amines in honeybees. Phenolamine octopamine has proved an important modulator of behavior. Binding of octopamine to its receptors causes elevation of [Ca(2+) ]i or [cAMP]i . To date, only one honeybee octopamine receptor that induces Ca(2+) signals has been molecularly and pharmacologically characterized. Here we examined pharmacological properties of four additional honeybee octopamine receptors. When heterologously expressed, all receptors induced cAMP production after binding to octopamine with EC50s in the nanomolar range. Receptor activity was most efficiently blocked by mianserin, a substance with antidepressant activity in vertebrates. The rank order of inhibitory potency in potential receptor antagonists was very similar on all four honeybee receptors with mianserin > cyproheptadine > metoclopramide > chlorpromazine > phentolamine. The subroot of octopamine receptors activating adenylyl cyclases is the largest that has so far been characterized in arthropods, and it should now be possible to unravel the contribution of individual receptors to the physiology and behavior of honeybees. This article is protected by copyright. All rights reserved

    The LIM-Only Protein Four and a Half LIM Domain Protein 2 Attenuates Development of Psoriatic Arthritis by Blocking Adam17-Mediated Tumor Necrosis Factor Release

    No full text
    Four and a half LIM domain protein 2 (Fhl2) is an intracellular adaptor molecule with a high protein protein interaction capacity. It acts as a modulator of several signaling molecules in the cytosol and as a cofactor of transcription in the nucleus. Recent studies suggest the role of Fhl2 in tissue repair and the anti-inflammatory response. Herein, we show that Fhl2-deficient mice develop a more severe psoriatic arthritis disease under induction of the inducible human tumor necrosis factor (hTNF) transgene than wild-type mice. The disease was accompanied by increased infiltration of activated macrophages and T regulatory cells in skin and digit joints as well as by increased expression of matrix metalloproteases and bone-specific proteases. The more severe pathogenesis of psoriatic arthritis in Fhl2 knockout mice coincided with enhanced Levels of soluble hTNF cytokine, but surprisingly not with transcription of the hTNF transgene. Studying the shedding of cell membrane bound hTNF by Adam17, a known Fhl2 interacting protein, revealed an enhanced release of TNF in the absence of Fhl2. In summary, our results show that Fhl2 anticipates the emerging inflammation and specifically the development of psoriatic arthritis by impeding the Adam17-mediated release of TNF

    miR-127-3p Is an Epigenetic Activator of Myofibroblast Senescence Situated within the MicroRNA-Enriched Dlk1-Dio3-Imprinted Domain on Mouse Chromosome 12

    No full text
    During wound healing, fibroblasts differentiate into nonproliferative contractile myofibroblasts, contribute to skin repair, and eventually undergo apoptosis or become senescent. MicroRNAs are post-transcriptional regulators of gene expression networks that control cell fate and survival and may also regulate senescence. In this study, we determined the regulated microRNAs in myofibroblasts isolated from wounds and analyzed their role in senescent myofibroblast formation. Transcriptome profiling showed that a 200 kilobase pair region of the Dlk1-Dio3.imprinted domain on mouse chromosome 12 encodes for most of the upregulated microRNAs in the entire genome of mouse myofibroblasts. Among those, miR-127-3p induced a myofibroblast-like phenotype associated with a block in proliferation. Molecular analysis revealed that miR-127-3p induced a prolonged cell cycle arrest with unique molecular features of senescence, including the activation of the senescence-associated beta-galactosidase, increase in p53 and p21 levels, inhibition of lamin B1, proliferation factors, and the production of senescence-associated inflammatory and extracellular matrix-remodeling components. Hence, miR-127-3p emerges as an epigenetic activator regulating the transition from repair to remodeling during skin wound healing but may also induce age-related defects, pathological scarring, and fibrosis, all linked to myofibroblast senescence

    Identification of a myofibroblast-specific expression signature in skin wounds

    No full text
    After skin injury fibroblasts migrate into the wound and transform into contractile, extracellular matrix-producing myofibroblasts to promote skin repair. Persistent activation of myofibroblasts can cause excessive fibrotic reactions, but the underlying mechanisms are not fully understood. We used SMA-GFP transgenic mice to study myofibroblast recruitment and activation in skin wounds. Myofibroblasts were initially recruited to wounds three days post injury, their number reached a maximum after seven days and subsequently declined. Expression profiling showed that 1749 genes were differentially expressed in sorted myofibroblasts from wounds seven days post injury. Most of these genes were linked with the extracellular region and cell periphery including genes encoding for extracellular matrix proteins. A unique panel of core matrisome and matrisome-associated genes was differentially expressed in myofibroblasts and several genes not yet known to be linked to myofibroblast-mediated wound healing were found (e.g. Co124a1, Podnl1, Bvcan, Tinag11, Thbs3, Adamts16, Adamts19, Cxcl's, Ccl's). In addition, a complex network of G protein-coupled signaling events was regulated in myofibroblasts (e.g. Adcy1, Plbc4, Gnas). Hence, this first characterization of a myofibroblast-specific expression profile at the peak of in situ granulation tissue formation provides important insights into novel target genes that may control excessive ECM deposition during fibrotic reactions. (C) 2017 Elsevier B.V. All rights reserved

    PECAM1(+)/Sca1(+)/CD38(+) vascular cells transform into myofibroblast-like cells in skin wound repair.

    Get PDF
    Skin injury induces the formation of new blood vessels by activating the vasculature in order to restore tissue homeostasis. Vascular cells may also differentiate into matrix-secreting contractile myofibroblasts to promote wound closure. Here, we characterize a PECAM1(+)/Sca1(+) vascular cell population in mouse skin, which is highly enriched in wounds at the peak of neoangiogenesis and myofibroblast formation. These cells express endothelial and perivascular markers and present the receptor CD38 on their surface. PECAM1(+)/Sca1(+)/CD38(+) cells proliferate upon wounding and could give rise to α-SMA(+) myofibroblast-like cells. CD38 stimulation in immunodeficient mice reduced the wound size at the peak of neoangiogenesis and myofibroblast formation. In humans a corresponding cell population was identified, which was enriched in sprouting vessels of basal cell carcinoma biopsies. The results indicate that PECAM1(+)/Sca1(+)/CD38(+) vascular cells could proliferate and differentiate into myofibroblast-like cells in wound repair. Moreover, CD38 signaling modulates PECAM1(+)/Sca1(+)/CD38(+) cell activation in the healing process implying CD38 as a target for anti-angiogenic therapies in human basal cell carcinoma
    corecore