622 research outputs found

    Plastic pollution of four understudied marine ecosystems: a review of mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor

    Get PDF
    Plastic pollution is now a worldwide phenomenon affecting all marine ecosystems, but some ecosystems and regions remain understudied. Here, we review the presence and impacts of macroplastics and microplastics for four such ecosystems: mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. Plastic production has grown steadily, and thus the impact on species and ecosystems has increased, too. The accumulated evidence also indicates that plastic pollution is an additional and increasing stressor to these already ecosystems and many of the species living in them. However, laboratory or field studies, which provide strong correlational or experimental evidence of ecological harm due to plastic pollution remain scarce or absent for these ecosystems. Based on these findings, we give some research recommendations for the future

    Benthic megafauna in the Arctic Ocean - Dynamics in temporal community composition

    Get PDF
    Benthic megafauna in the Arctic Ocean plays a pivotal role in the functioning of deep-sea ecosystems and influences the global carbon cycle. The structure of benthic communities in the Arctic Ocean is primarily determined by food availability and therefore by phytodetrital flux from surface layers. Hence, highly productive marginal sea-ice zones provide high food supply for benthic communities. With the advance in climate change, marginal sea-ice zones are shifting and organisms are faced with changing phytodetrital fluxes. This study was designed to increase the understanding of benthic megafauna community dynamics in the Arctic Ocean and infer predictions about the future. Therefore, the benthic megafauna was quantified at three stations, with contrasting extent of sea-ice coverage, located in the north (N3), centre (HG-IV) and in the south (S3) of the HAUSGARTEN observatory in the Fram Strait. Image data from different years between 2016 and 2021 were annotated and analysed in context with sea- ice coverage measurements. The benthic megafauna communities showed a shift in dominant functional traits, from sessile suspension feeders, to mobile deposit feeders at all stations. The dominance of mobile deposit feeders was attributed to one species, the sea cucumber, Elpidia heckeri. Additionally, a positive relation between benthic megafaunal density and the extent of sea-ice coverage at N3 and HG-IV was indicated. Variations in phytodetrital quality and quantity are most likely the reasons for these strong density increases of the opportunistic sea cucumber. For the future, similarly strong variations in deposit feeding holothurian densities are expected, given their ability to quickly respond to changing phytodetrital fluxes. The results also indicate that benthic megafauna community composition as a whole is likely to exhibit strong variations in density and diversity. This research shows how valuable image data from time-series studies are in order to detect long-term trends in the future Arctic Ocean

    Benthic megafauna in the Arctic Ocean - Future dominion by sea cucumbers?

    Get PDF
    Benthic megafauna in the Arctic Ocean are important for the functioning of deep-sea ecosystems and influence the global carbon cycle. Food availability, as represented primarily by the phytodetrital flux from surface layers, influences the structure of benthic communities in the Arctic Ocean. Along the highly productive marginal sea-ice zones, benthic communities benefit from enhanced food supply. With the advance in climate change, marginal sea-ice zones are shifting and organisms at the seafloor are faced with changing environmental fluxes. This study was designed in order to deepen our understanding of benthic megafauna community dynamics in the Arctic Ocean, from which to infer predictions about the future. Benthic megafauna was quantified by annotating image data from 2016 to 2021. Image data was derived from three different stations, located in the north (N3), centre (HG-IV) and south (S3) of the HAUSGARTEN observatory in the Fram Strait, and was analysed in context with sea-ice coverage measurements. The benthic megafauna communities showed a shift in dominant functional traits, from sessile suspension feeders, to mobile deposit feeders at all stations over the study period. The dominance of mobile deposit feeders was attributed to one species, the sea cucumber Elpidia heckeri. This species showed increases in density of more than 20% across all three stations during the study period. Variations in phytodetrital quality and quantity are most likely the reasons for these strong density increases of the opportunistic sea cucumber. Additionally, a positive relationship between benthic megafaunal density and the extent of sea-ice coverage at N3 and HG-IV was indicated. From these data, into the future, similar strong variations in deposit feeding holothurian densities are expected, given their ability to quickly respond to changing phytodetrital fluxes. This research shows how valuable long-term image-based data studies are in order to detect trends in the future Arctic Ocean

    Marine litter: Sea change for plastic pollution

    Get PDF

    Marine Debris Floating in Arctic and Temperate Northeast Atlantic Waters

    Get PDF
    Floating marine debris is ubiquitous in marine environments but knowledge about quantities in remote regions is still limited. Here, we present the results of an extensive survey of floating marine debris by experts, trained scientists from fields other than pollution or non-professional citizen scientists. A total of 276 visual ship-based surveys were conducted between 2015 and 2020 in the Northeast (NE) Atlantic from waters off the Iberian Peninsula to the Central Arctic, however, with a focus on Arctic waters. Spatiotemporal variations among regional seas (Central Arctic, Barents Sea, Greenland Sea, Norwegian Sea, North Sea) and oceanic regions (Arctic waters and the temperate NE Atlantic) were explored. The overall median debris concentration was 11 items km-2, with considerable variability. The median concentration was highest in the North Sea with 19 items km-2. The Nordic seas, except the Central Arctic showed median concentrations ranging from 9 to 13 items km-2. Plastic accounted for 91% of all floating items. Miscellaneous fragments, films, ropes and nets, packaging materials, expanded polystyrene and straps were the most frequently observed plastic types. Although the median debris concentration in the Central Arctic was zero, this region was not entirely free of floating debris. The variations between regional seas and oceanic regions were statistically not significant indicating a continuous supply by a northward transportation of floating debris. The data show a slight annual decrease and clear seasonal differences in debris concentrations with higher levels observed during summer. A correlation between debris concentrations and environmental and spatial variables was found, explaining partly the variability in the observations. Pollution levels were 500 times lower than those recorded on the seafloor indicating the seafloor as a sink for marine debris. The Arctic was characterised by similar pollution levels as regions in temperate latitudes highlighting that Arctic ecosystems face threats from plastic pollution, which add to the effects of rapid climate change

    NoPhish: An Anti-Phishing Education App

    Get PDF
    Phishing is still a prevalent issue in today’s Internet. It can have financial or personal consequences. Attacks continue to become more and more sophisticated and the advanced ones (including spear phishing) can only be detected if people carefully check URLs. We developed a game based smartphone app NoPhish to educate people in accessing, parsing and checking URLs; i.e. enabling them to distinguish trustworthy and non-trustworthy websites. Throughout several levels information is provided and phishing detection is exercised

    NoPhish App Evaluation: Lab and Retention Study

    Get PDF
    Phishing is a prevalent issue of today’s Internet. Previous approaches to counter phishing do not draw on a crucial factor to combat the threat - the users themselves. We believe user education about the dangers of the Internet is a further key strategy to combat phishing. For this reason, we developed an Android app, a game called –NoPhish–, which educates the user in the detection of phishing URLs. It is crucial to evaluate NoPhish with respect to its effectiveness and the users’ knowledge retention. Therefore, we conducted a lab study as well as a retention study (five months later). The outcomes of the studies show that NoPhish helps users make better decisions with regard to the legitimacy of URLs immediately after playing NoPhish as well as after some time has passed. The focus of this paper is on the description and the evaluation of both studies. This includes findings regarding those types of URLs that are most difficult to decide on as well as ideas to further improve NoPhish.&nbsp

    Citizen scientists reveal: marine litter pollutes Arctic beaches and affects wild life

    Get PDF
    Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9-524 g m-2 and were similar to those from densely populated areas. Plastics accounted for >80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems
    • …
    corecore