275 research outputs found

    A Study of the Standard Cirrus Wing Lift Distribution Versus Bell Shaped Lift Distribution

    Get PDF
    This thesis discusses a comparison of the differences in aerodynamic performance of wings designed with elliptical and bell-shaped lift distributions. The method uses a Standard Cirrus sailplane wing with a lift distribution associated with the induced drag benefits of an elliptical distribution (span efficiency = 0.96) as the basis of comparison. The Standard Cirrus is a standard class sailplane with 15-meter wingspan that was designed by Schempp-Hirth in 1969. This sailplane wing was modeled and analyzed in XFLR5, then validated against existing wind tunnel airfoil data, and Standard Cirrus flight test data. The root bending moment of the baseline wing was determined and used as the primary constraint in the design of two wings with bell-shaped lift distribution. These wings were modeled in XFLR5 by adjusting chord length and geometric twist respectively, and then they were studied using fixed speed lifting line analysis. Steady state cruise conditions for the Standard Cirrus sailplane were taken from the flight test data and applied for the analysis. The wing designed with chord variation posed incompatibilities with the lifting line method. The resulting planform was strongly tapered in the wingtip region and the reference chord length there was such that the software could not solve for a Reynolds number the magnitude resulting from two-dimensional airfoil analysis. However, the wing geometry provided insight into the design aspect of wings with bell-shaped lift distribution. Using chord variation to shape the lift distribution, the wing featured a 12% increase in wingspan but a 6.5% decrease in total wetted area when compared to the baseline. The results of the analysis of the wing designed with geometric twist indicate that induced drag decreased by 5% when compared to the baseline wing. The constraint on root bending moment resulted in a 12% increase in wingspan. Wetted area also increased by 14.8% over the baseline yielding an estimated 15% increase in skin friction

    The new Midwest in recession and recovery

    Get PDF
    Recessions ; Federal Reserve District, 7th ; Manufactures

    HAS AN INTEGRATED PEST MANAGEMENT APPROACH REDUCED BLACKBIRD DAMAGE TO SUNFLOWER?

    Get PDF
    Since the mid- 1970s many new and modified damage abatement methods have been used to reduce blackbird damage to ripening sunflower in the northern Great Plains. To assess the overall impact of these techniques, we analyzed the dynamic relationship between breeding blackbird densities and sunflower damage. Breeding density estimates were made at both the regional and county levels, whereas, sunflower damage estimates were made at the county level only. Periodic regional estimates of breeding densities between 1967 and 1998 for red-winged blackbirds (Agelaius phoeniceus), common grackles (Quiscalus quiscula), and yellow-headed blackbirds (Xanthocephalus xanthocephalus) showed no differences among years. To increase our ability to detect changes in breeding density, we started intensive county-level surveys in 1996. These surveys, in four counties in North Dakota and South Dakota, showed that blackbird densities were greater in 1998 and 1999 than during the previous two years. We surveyed sunflower damage in two of these counties from 1994 to 1998 and found no difference in damage (F= 1.8%) among years. In 1997 and 1998, with the two other counties added to the survey, we found that damage was similar between years, averaging 2.2%. Dollar loss per hectare was trending lower in three of the study counties that had a historical database for comparison. This supports the idea that \u27local\u27 breeding densities are not correlated with damage levels. We will continue to use annual estimates of breeding densities and sunflower damage to assess the effects of an evolving Integrated Pest Management program

    Impact of Hormone Replacement Therapy on Exercise Training-Induced Improvements in Insulin Action in Sedentary Overweight Adults

    Get PDF
    Exercise training (ET) and hormone replacement therapy (HRT) are both recognized influences on insulin action, but the influence of HRT on responses to ET has not been examined. In order to determine if HRT use provided additive benefits for the response of insulin action to ET, we evaluated the impact of HRT use on changes in insulin during the course of a randomized, controlled, aerobic ET intervention. Subjects at baseline were sedentary, dyslipidemic, and overweight. These individuals were randomized to six months of one of three aerobic ET interventions or continued physical inactivity. In 206 subjects, an insulin sensitivity index (SI) was obtained with a frequently sampled intravenous glucose tolerance test pre- and post-ET. Baseline and post-intervention fitness, regional adiposity, general adiposity, skeletal muscle biochemistry and histology, and serum lipoproteins were measured as other putative mediators influencing insulin action. Two-way analyses of variance were used to determine if gender or HRT use influenced responses to exercise training. Linear modeling was used to determine if predictors for response in SI differed by gender or HRT use. Women who used HRT (HRT+) demonstrated significantly greater improvements in SI with ET than women not using HRT (HRT-). In those HRT+ women, plasma triglyceride change best correlated with change in SI. For HRT- women, capillary density change, and for men, subcutaneous adiposity change, best correlated with change in SI. In summary, in an ET intervention, HRT use appears associated with more robust responses in insulin action. Also, relationships between ET induced changes in insulin action and potential mediators of change in insulin action are different for men, and for women on or off HRT. These findings have implications for the relative utility of ET for improving insulin action in middle-aged men and women, particularly in the setting of differences in HRT use. Address Originally published Metabolism, Vol. 57, No. 7, July 200

    Kerr Noise Reduction and Squeezing

    Get PDF
    We introduce a model of squeezing and noise reduction in the Kerr effect that accounts for noise in all quadratures of the driving field. Consequently we show that Kerr squeezing is much more sensitive to driving noise than squeezing produced by second harmonic generation (SHG).We experimentally demonstrate this sensitivity using a nonlinear system that tunes between strong classical SHG and Kerr behaviours. Whilst the system experiences strong squeezing in the SHG limit, it experiences no squeezing in the Kerr limit, although it does experience strong classical noise reduction, or classical squeezing

    Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

    Full text link
    We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16×\times16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7∘^{\circ} FHWM Gaussian-shaped beams with <<1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 ×\times 10−17^{-17} W/Hz\sqrt{\mathrm{Hz}}, consistent with the phonon noise prediction.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 201
    • …
    corecore