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ABSTRACT 

A Study of the Standard Cirrus Wing Lift Distribution Versus Bell Shaped Lift Distribution 

William H. Bergman 

This thesis discusses a comparison of the differences in aerodynamic performance of wings 

designed with elliptical and bell-shaped lift distributions. The method uses a Standard Cirrus 

sailplane wing with a lift distribution associated with the induced drag benefits of an elliptical 

distribution (span efficiency = 0.96) as the basis of comparison. The Standard Cirrus is a 

standard class sailplane with 15-meter wingspan that was designed by Schempp-Hirth in 1969. 

This sailplane wing was modeled and analyzed in XFLR5, then validated against existing wind 

tunnel airfoil data, and Standard Cirrus flight test data. The root bending moment of the baseline 

wing was determined and used as the primary constraint in the design of two wings with bell-

shaped lift distribution. These wings were modeled in XFLR5 by adjusting chord length and 

geometric twist respectively, and then they were studied using fixed speed lifting line analysis. 

Steady state cruise conditions for the Standard Cirrus sailplane were taken from the flight test 

data and applied for the analysis. 

The wing designed with chord variation posed incompatibilities with the lifting line method. The 

resulting planform was strongly tapered in the wingtip region and the reference chord length there 

was such that the software could not solve for a Reynolds number the magnitude resulting from 

two-dimensional airfoil analysis. However, the wing geometry provided insight into the design 

aspect of wings with bell-shaped lift distribution. Using chord variation to shape the lift distribution, 

the wing featured a 12% increase in wingspan but a 6.5% decrease in total wetted area when 

compared to the baseline. 

The results of the analysis of the wing designed with geometric twist indicate that induced drag 

decreased by 5% when compared to the baseline wing. The constraint on root bending moment 

resulted in a 12% increase in wingspan. Wetted area also increased by 14.8% over the baseline 

yielding an estimated 15% increase in skin friction. 



v 

 

ACKNOWLEDGMENTS 

 

I would like to acknowledge Dr. Drake for giving me guidance throughout my time at Cal Poly 

both with thesis work and in my general approach to life. He listened to my whimsical ideas and 

even still offered me a place in the aerospace program and in his lab. Between office hours and 

trips out to the EFR, he has taught me to be a more logical thinker through his healthy skepticism 

and sharp sense of humor.  

My committee members have also been a great source of learning over my two years in 

San Luis Obispo. Thank you Dr. Westphal for spending your office hours talking to me about 

history and compressible flow during my first quarter at the university. You made me feel 

welcome in a new environment. Dr. Iscold, thank you for taking me along on the GVT test for 

Nixus and for being a spring of inspiration with your achievements. Dr. Deffo, I regret not getting 

further into the structural considerations of this work, but I would like to continue research in the 

future and would be grateful for your mentorship there if you would permit it.  

Thank you, Al Bowers, for providing me with the initial spark that lead me down this path. 

Your technical note from 2016 exposed me to theoretical aerodynamics and a greater 

appreciation of nature. It also motivated me to go back to school and learn a great deal beyond 

my intended research.  

I would like to also acknowledge my friends and family for supporting me always in all 

aspects of life. I am fortunate for winding up at 338 where I made friendships that I could never 

have imagined before moving to SLO. Rest in peace Don and thank you for building such a 

strange place to call home.  

Finally, I would like to dedicate this thesis to my grandfather Dr. Gunnar Bergman whose 

curiosity could never be snuffed out. The flame burns on in your name.  

 

  



vi 

 

TABLE OF CONTENTS 

 

Page 

LIST OF TABLES ........................................................................................................................... viii 

LIST OF FIGURES .......................................................................................................................... ix 

CHAPTER 

1. INTRODUCTION .......................................................................................................................... 1 

1.1 Statement of Problem .......................................................................................................... 2 

1.2 Purpose of Research ........................................................................................................... 2 

1.3 Literature Review ................................................................................................................. 3 

1.3.1 The Original Prandtl Theory ....................................................................................... 3 

1.3.2 Constraining Total Lift and Root Bending Moment .................................................... 5 

1.3.3 Standard Cirrus Sailplane Baseline ......................................................................... 10 

1.3.4 Summary .................................................................................................................. 10 

2. APPROACH AND METHODOLOGY ......................................................................................... 11 

2.1 XFLR5 ................................................................................................................................ 11 

2.1.1 Governing Equations of Lifting Line Theory ............................................................. 11 

2.2 Airfoil Verification ............................................................................................................... 15 

2.3 Baseline Wing Design and Validation ............................................................................... 18 

2.3.1 Wing Geometry Definition ........................................................................................ 19 

2.3.2 Panel Refinement Study .......................................................................................... 19 

2.3.3 Determination of Root Bending Moment .................................................................. 21 

2.3.4 Lift Distribution of the Baseline Wing ....................................................................... 22 

3. BSLD WING DESIGNED WITH VARIED CHORD LENGTH .................................................... 24 

3.1 Bell Wing from Adjusted Chord Lengths ........................................................................... 24 

3.2 Paneling and Analyzing the Bell Wing ............................................................................... 26 

3.3 Comparison of the Bell Wing and the Baseline Wing ........................................................ 28 

4. BSLD WING DESIGNED WITH GEOMETRIC TWIST .............................................................. 30 

4.1 Bell Wing from Geometric Twist ........................................................................................ 30 

4.2 Comparison of the Bell Wing with Geometric Twist and the Baseline Wing ..................... 32 

4.3 Comparison of Baseline and Geometric Bell Speed Polars .............................................. 36 

5. ESTIMATION OF DIFFERENCES IN DRAG FORCES BETWEEN WINGS ............................ 39 

5.1 Induced Drag Calculations ................................................................................................ 39 

5.2 Skin Friction Analysis ........................................................................................................ 39 

5.3 Governing Equations and Methodology ............................................................................ 40 

5.4 Results ............................................................................................................................... 41 

6. DISCUSSION OF RESULTS ..................................................................................................... 43 



vii 

 

7. CONCLUSION ........................................................................................................................... 46 

BIBLIOGRAPHY ............................................................................................................................ 48 

APPENDICES 

A: Airfoil Coordinates ............................................................................................................... 50 

B: XFLR5 Wing Design Parameters ........................................................................................ 52 

C: List of Terms ....................................................................................................................... 53 

  



viii 

 

LIST OF TABLES 

 

Table               Page 

 

2.1 A tabulated comparison of airfoil characteristics ....................................................................................... 16 

2.2 Parameters used for the airfoil validation study in XFLR5 ....................................................................... 16 

2.3 Panel Refinement Study .............................................................................................................................. 20 

3.1 Parameters used for the Bell Wing Analysis in XFLR5 ............................................................................ 26 

3.2 Comparison of performance characteristics between the baseline and bell wing analyses ............... 28 

4.1 Comparison of the performance characteristics between the baseline and geometric bell wing 

analyses ......................................................................................................................................................... 33 

5.1 Comparison of induced drag forces ........................................................................................................... 39 

5.2 Comparison of coefficients of drag and drag forces ................................................................................. 42 

5.3 Comparison of changes in wingspan and induced drag between multiple studies of bell-shaped 

lift distributions ............................................................................................................................................... 43 

  



ix 

 

LIST OF FIGURES 

Figure                 Page 

1.1 An illustration of elliptical versus bell-shaped local lift distributions over a semi-span ......................... …1 

1.2 Standard Cirrus sailplane [3] ......................................................................................................................... 2 

1.3 Comparison of three spanwise loadings: 1 -elliptical, 2 – Prandtl’s bell, 3 -Klein & Viswanathan 

1973 [5] ............................................................................................................................................................ 8 

1.4 Bell/elliptical induced drag ratio versus span-ratio for three different bell wing loadings: 1 -Prandtl 

2 – Klein & Viswanathan (1973), 3 – Klein & Viswanathan (1975) [6] ................................................. 9 

2.1 Depiction of the vortex filament model of a finite wing [9] .......................................................................... 12 

2.2 Induced angle of attack and associated downwash [9] ............................................................................. 13 

2.3 A comparison of the two airfoils used on the Standard Cirrus sailplane drawn over a shared 

        neutral line ..................................................................................................................................................... 15 

2.4 XFLR5 results compared against empirical NACA data for root airfoil at α =0.00 ̊ ................................ 17 

2.5 Planform view of the Standard Cirrus wing indicating the configuration of the airfoils ........................... 18 

2.6 Semi-span planform view of the final panel distribution from the refinement study ............................... 20 

2.7 Bending moment against wingspan for baseline wing .............................................................................. 21 

2.8 Comparison of baseline wing lift distribution versus ideal ellipse distribution .......................................... 22 

3.1 Semi-span planform of the bell wing created by adjusting chord lengths ............................................... 25 

3.2 Detail of wingtip paneling and highly tapered geometry ............................................................................ 27 

3.3 Bell wing lift distribution plotted over the target bell curve .......................................................................... 27 

3.4 A comparison of induced drag coefficient versus wingspan for the baseline and bell loaded wings ... 29 

4.1 Semi-span planform of the bell wing created by adjusting geometric twist ............................................. 31 

4.2 Geometric bell wing lift distribution plotted over the target bell curve ....................................................... 31 

4.3 Comparison of induced drag against span location for baseline versus geometric bell wings ............. 35 

4.4 Comparison of speed polars for the baseline and geometric bell wings with the shared best glide 

       line superimposed ......................................................................................................................................... 37 

5.1 Sections used for the estimation of skin friction for the chord varied bell wing........................................ 41 

6.1 Normalized comparison of the studied lift distributions .............................................................................. 45



 

1 
 

Chapter 1 

INTRODUCTION 

 

In 1920 Ludwig Prandtl [1] developed lifting line theory to approach the problem of determining 

what lift distribution over the span of a wing should produce the lowest induced drag. Prandtl first 

bounded the problem by using a straight wing of uniform airfoil and fixed span. With the span 

constrained, he found that an elliptically shaped lift distribution yields the least induced drag. 

In 1933 however, he approached the problem differently by instead constraining overall 

wing structural loading [2]. Once again, he applied his lifting line theory to solve for the resulting 

lift distribution and found that it took on a bell shape. The natural follow-up question was how the 

two lift distributions compare to each other in terms of minimum induced drag. 

 

Figure 1.1: An illustration of elliptical versus bell-shaped local lift distributions over a 

semi-span. 
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1.1 Statement of Problem 

 

This thesis aimed to answer this question by comparing three wings: an existing wing with a lift 

distribution designed with minimized induced drag associated with elliptical loading, and two with 

bell shaped lift distribution. These comparisons used a Standard Cirrus sailplane wing as the 

baseline. Two wings with bell-shaped loading were then designed using the same bending 

moment as the baseline wing, and the same total lift. To apply the structural loading constraint on 

the bell wing, the root bending moment was fixed between all the wing designs.  

 

Figure 1.2: Standard Cirrus sailplane [3]. 

 

1.2  Purpose of Research 

Aircraft wing design is influenced by a wide range of considerations for the overall system, but 

one factor that is generally sought to be minimized is that of induced drag. Rising fuel costs and 

burgeoning air travel around the world have driven commercial aircraft manufacturers to optimize 

their fleets for fuel efficiency. Aerodynamic improvements to the fuselage and lifting surfaces of 

airplanes have provided incremental gains in efficiency over recent decades. Varying wing 

geometry to achieve different spanwise lift distributions is one aspect of design that could yield a 

reduction in fuel consumption through a reduction in induced drag. This thesis focuses on directly 
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comparing elliptical and bell-shaped lift distributions as they affect the aerodynamic efficiency of a 

specific baseline aircraft. The lessons learned from this exercise aim to better the understanding 

of how a bell-shaped lift distribution affects induced drag.  

 

1.3 Literature Review 

 

This section reviews previous theoretical work done on the comparison of drag induced by 

elliptical and bell-shaped lift distributions. It also details different methods to apply constraints on 

total lift and wing structure to set up the comparison. Information on the Standard Cirrus sailplane 

geometry and performance are also provided. 

 

1.3.1 The Original Prandtl Theory 

Ludwig Prandtl developed lifting line theory to approach the problem of determining the lift 

distribution of a wing of minimum induced drag. The problem is classically set up by constraining 

gross weight and wingspan. Doing so yields an elliptical lift distribution (ELD) which Prandtl 

published in 1919 [1]. Prandtl later discovered that there exists a lift distribution of 11% lower 

induced drag and 22% greater span that can be determined by constraining different parameters. 

In the case of the so-called bell-shaped lift distribution (BSLD) published in 1933, Prandtl instead 

fixed the structural weight by constraining the moment of inertia of the theoretical lift-distribution 

as follows [2].  

The expressions for induced drag, total lift, and moment of inertia of the lift-distribution 

are given as functions of the spanwise coordinate below [5].  

 
𝐷𝑖 = 4𝜌∞𝑉∞

2𝑏2 ∫ 𝑤(𝑦)𝛼𝑖(𝑦)𝑑𝑦
1

0

 

 

(1) 
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𝐿 = 2𝜌∞𝑉∞

2𝑏2 ∫ 𝑤(𝑦)𝑑𝑦
1

0

 

 

(2) 

 
𝐿𝑟2 = 2𝜌∞𝑉∞

2𝑏4 ∫ 𝑤(𝑦)𝑦2
1

0

𝑑𝑦 

 

(3) 

where 𝜌∞ is air density, 𝑉∞ is free stream velocity, 𝑏 is the wingspan, 𝑤(𝑦) is downwash as a 

function of spanwise location 𝑦, 𝑟 is the radius of gyration, and 𝛼𝑖 is induced angle of attack which 

will be further explained in the next chapter. To optimize for the minimum induced drag, the 

differential terms of equations 1-3 are first derived, then set equal to zero.  

 
𝛿𝐷𝑖 = 2 ∫ 𝛿𝑤(𝑦)𝛼𝑖(𝑦)𝑑𝑤

1

0

= 0 
(4) 

 

 
𝛿𝐿 = ∫ 𝛿𝑤(𝑦)𝑑𝑦

1

0

= 0 
(5) 

 
𝛿𝐿𝑟2 = ∫ 𝛿𝑤(𝑦)𝑦2

1

0

𝑑𝑦 = 0 

 

(6) 

After solving for an explicit expression for 𝑤(𝑦), and substituting this in the equation for induced 

drag (Eq.1), the result can be compared to the amount of drag induced by an elliptical wing of 

equivalent total lift,  𝐷𝑖𝑒, using the ratio of their wingspans, 𝜎. 

 𝐷𝑖

𝐷𝑖𝑒

=
4𝜎4 − 6𝜎2 + 3

𝜎6
 

 

(7) 

The minimum of the ratio of induced drags, 0.89, occurs at a 𝜎 of 1.22 – that is to say that the 

drag induced by the bell wing is 11% less than the elliptical wing of equivalent total lift and 

moment of inertia of lift-distribution, when the span of the bell wing is 22% longer. Given the 
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potential advantages of further reducing induced drag, this theory has since been revisited and 

reformulated by other aerodynamic researchers.  

 Al Bowers, in 2016 published a technical note that expanded on Prandtl’s theory and 

drew further conclusions about the nature of wings with BSLD [15]. He stated that in contrast to 

the sharp discontinuity in downwash at the wingtips of an elliptically loaded wing, the downwash 

curve of a bell-loaded wing should feature a smooth and continuous transition to upwash at 

70.4% semi-span. It follows that the outboard 29.6% of the wingspan in the upwash region should 

experience induced thrust. He explains that the placement of an aileron control surface in this 

part of the wing yields the potential for coordinated turns without the need for a rudder because 

aileron deflection would result in a corresponding yaw moment in the coordinated direction. 

To the author’s knowledge, a one-to-one performance comparison between wings of ELD 

and BSLD does not currently exist. The goal of this thesis project is to use a Standard Cirrus 

Sailplane as a basis of comparison between the two distributions. Ultimately a wing with BSLD 

will be designed and analyzed using panel codes to provide metrics of comparison between key 

performance data. The first step, however, is to develop a firm understanding of the underlying 

theory and previous work on the topic. This literature review provides a summary of several 

resources that present different approaches to determining the lift distribution of minimum 

induced drag that will be considered to help guide the course of research. 

 

1.3.2 Constraining Total Lift and Root Bending Moment 

Several resources have been identified that approach the problem by fixing total lift and root 

bending moment. The motivation for this approach stems from the relationship between the 

weight of the wing spars and the local bending moment due to aerodynamic forces at each wing 

section. The wing structure must be designed such that it can withstand the aerodynamic loads 

that it is subjected to. Wing structural weight is desired to be kept at a minimum however so that 

overall aircraft weight can be minimized. Therefore, the root bending moment of the wing 

provides a good starting point for optimization because it reflects the sum of aerodynamic forces 
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along the span of the wing which have a direct correlation to the structural weight of the wing 

assuming that the spar is the primary structural element [17].  

R.T. Jones [4] in 1950 published a paper that provides an analytical comparison between 

wings of BSLD and ELD with the above constraints applied to both while allowing span to vary. 

His formulation, much like Prandtl led to a system of differential expressions for elements of lift, 

and induced drag and bending moment (rather than moment of inertia of lift distribution).  

 𝛿𝐿 = 0, 𝑙1 +  𝑙2 + 𝑙3 = 0 (8) 

 𝛿𝑀𝑅 = 0, 𝑙1𝑦1 +  𝑙2𝑦2 + 𝑙3𝑦3 = 0 (9) 

 𝛿𝐷𝑖 = 0, 𝑙1𝑤𝑖1 +  𝑙2𝑤𝑖2 + 𝑙3𝑤𝑖3 = 0 (10) 

 

from which a system of linear equations can be derived to satisfy the conditions where 

 𝑤𝑖 ∝ 𝑎 + 𝑏𝑦 (11) 

 

such that 𝑎 and 𝑏 are constants. This expression for downwash suggests that for the given 

constraints, “the downwash must show linear variation along the span.” The Jones paper also 

provides an explicit form for the induced drag associated with his approach: 

 
𝐷𝑖 =

𝐿2

𝜋
𝜌∞

2
𝑉∞(2𝑏𝑒)2

[8𝜎4 − 16𝜎3 + 9𝜎2]. 

 

(12) 

This equation contains the expression for induced drag of an ELD (outside the brackets) with the 

addition of several scaling factors that contain the ratio of the semi-span of the wing to that of an 

ELD having the same total lift and bending moment, 𝜎. Minimizing this equation, the induced drag 

is found to be 15% less than the elliptical baseline, when the span of the bell wing is allowed to 

extend to 15% longer than the baseline.  
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A. Klein and S.P. Viswanathan [5] took a similar approach to the problem in their paper 

by solely constraining the root bending moment. They also employed an analytical method 

starting with a review of Prandtl’s original formulation. Then, they replaced the terms for moment 

of inertia of the lift-distribution (Eq. 3), and the differential element of moment of inertia (Eq. 6) 

with the corresponding terms for root bending moment 𝑀𝑅.  

 
𝑀𝑅 = 2𝜌∞𝑉∞

2𝑏3 ∫ 𝛾(𝜂)𝜂
1

0

𝑑𝜂 
(13) 

 

 
𝛿𝑀𝑅 = ∫ 𝛿𝛾(𝜂)𝜂

1

0

𝑑𝜂 = 0 

 

(14) 

After solving with these boundary conditions, they found an explicit expression for the induced 

drag which, like the Jones approach, also contains the elliptical induced drag with a scaling 

factor.  

 𝐷𝑖

𝐷𝑖𝑒

=
𝜎2 + 8(1 − 𝜎2)

𝜎4
 

 

(15) 

The minimum ratio of induced drag in this case was 0.844 with a wingspan ratio of 1.33. This 

means that replacing Prandtl’s original constraint with that of the root bending moment yielded a 

roughly 16% reduction in induced drag with a 33% increase in span compared to an elliptical 

baseline. 
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Figure 1.3: Comparison of three spanwise wing loadings: 1 – elliptical, 2 – Prandtl’s bell, 3 
– Klein & Viswanathan 1973 [5]. 

 

Despite doubling the wingspan over the wing discussed in the Jones paper, Klein & 

Viswanathan concluded on only 1% greater savings on induced drag. This result appears to 

follow suit with a point made in the Jones paper that extending the wingspan past 15% leads to 

diminishing and marginal reductions in induced drag. They also included figures that illustrate 

both a comparison of the spanwise lift distribution curves, and induced drag ratio versus span 

ratio of Prandtl and his solutions. This curve shows that the bending moment constraint led to 

further reductions in induced drag than the moment of inertia of lift distribution constraint. It also 

shows that past the optimized wingspan, further increasing the span does in fact lead to 

diminishing improvements in induced drag. 

Two years later the same pair of Klein and Viswanathan [6] took a novel approach at the 

optimization problem by constraining wing structural weight with integrals of the spanwise shear-

force and bending moment distributions. They start with the integrals used in determining the 

spanwise shear force and bending moment due to air loads. Then the spanwise loadings are 

determined for which the induced drag is given as a function of spanwise flow angles and 

loadings. This yields an expression with three constants that are solved for by applying the 
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structural constraints, resulting in an induced drag ratio of 0.929 with a span ratio of 1.160. This 

result is compared to the Prandtl paper, and the previous result found by this research team on a 

plot of induced drag ratio versus span ratio using the classical ELD as the basis. The results from 

this paper indicate a 7% reduction in reduced drag with a 16% increase in span.  The conclusion 

discusses the range of possible lift distributions that are possible by constraining different aspects 

of the wing design. 

Figure 1.4: Bell/elliptical Induced drag ratio versus span-ratio for three different bell wing 
loadings: 1 – Prandtl, 2 – Klein & Viswanathan (1973), 3 – Klein & Viswanathan (1975) [6]. 

 

Phillips, Hunsaker and Joo [7] take analysis a step further and consider three cases to 

arrive at minimum induced drag: 1) fixed weight, max stress, and chord length, 2) fixed weight, 

max stress, and wing loading, and 3) fixed weight, max deflection, and wing loading. Their 

approach yielded a formulation resulting from Fourier analysis where all the lift distributions could 

be obtained by varying the coefficient of one the Fourier terms. The report concludes that stress-

limited designs would excel in high load factor maneuvers whereas elliptical distributions still 

induce the least amount of drag in steady level flight. It offers the design consideration of 

employing variable twist geometries to transition between lift distributions. The deflection-limited 

solution resulted in a significant 16.5% increase in induced drag. However, the paper states that 
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this conclusion was reached simply to demonstrate a method of deriving lift distribution from fixed 

deflection and that other approaches might be more suitable in practice. 

It should be mentioned that all the papers discussed to this point have employed 

analytical methods for determining lift distribution. They are highly theoretical and apply only to 

wings of rectangular, un-swept planform. There are certainly other ways of achieving BSLD such 

as allowing for variable chord length or spanwise twist. After obtaining a thorough understanding 

of the analytical methods employed in the above papers, this research will use a numerical panel 

code to investigate BSLD developed through variable chord length and geometric twist. These 

additional variable design parameters will allow for a more practical approach to the comparison 

of lift distributions.  

 

1.3.3 Standard Cirrus Sailplane Baseline 

Thomas Hansen [8] produced a comprehensive analysis of the performance of the Standard 

Cirrus sailplane. He used Idaflieg flight test results to validate extensive simulations run in CFD. 

This report will likely be used as a basis of comparison to the wing of BSLD that is ultimately 

designed. CFD does not provide an easy way to determine induced drag however, so the wing 

geometry will be adapted to panel codes for that calculation. Fortunately, Hansen has provided 

the CAD geometry for the sailplane that he made using a digitizing arm. The CFD physics 

parameters used in his report have also been supplied so that consistent simulations can be run 

for performance comparison. 

 

1.3.4 Summary 

 

There was found to be significant variation in results across the different approaches taken to 

calculate the induced drag of BSLD. Constraining different parameters yielded a wide spectrum of 

results but there was a consistent overall reduction in induced drag with the BSLD. 
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Chapter 2 

APPROACH AND METHODOLOGY 

 

2.1 XFLR5 

Version 6.47 of XFLR5 was chosen to carry out the theoretical aerodynamic analysis of both two- 

and three-dimensional geometries. This software was selected because it is intended for airfoil 

and wing analysis at low Reynolds numbers using lifting line theory with a panel method. In fact, 

XFLR5 was originally developed to model the performance of sailplanes and is additionally open 

for free public use. While lifting line theory does not consider compressible flow effects, those 

factors lie outside of the scope of this thesis which focuses on an inviscid comparison of lift 

distributions.  

 

2.1.1 Governing Equations of Lifting Line Theory 

The governing equations of lifting line theory were derived by Ludwig Prandtl during 1911-1918 

[9] when he further developed the vortex filament model of a wing. The model discretizes the 

circulation about a wing into an infinite number of vortex filaments that both extend to infinity off 

the trailing edge in the direction of the freestream flow and are fixed to the flow with a common 

bound vortex.  
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Figure 2.1: Depiction of the vortex filament model of a finite wing. [9] 

 

Following from the work done by his contemporaries, a bound vortex should experience a force 

expressed by the Kutta-Joukowski equation: 

 𝐿′(𝑦0) =  𝜌∞𝑉∞𝛤(𝑦0) (16) 

where 𝐿′(𝑦0) is the local lift force acting at a location along the span, 𝜌∞ is the freestream density, 

𝑉∞ is the freestream velocity and 𝛤(𝑦0) is the local circulation at the same location along the 

span. By integrating the equation over the span of a finite wing, the total lift of the wing can then 

be obtained:  

 

𝐿 = ∫ 𝐿′(𝑦)𝑑𝑦

𝑏
2

−
𝑏
2

=  𝜌∞𝑉∞ ∫ 𝛤(𝑦)𝑑𝑦

𝑏
2

−
𝑏
2

 

 

(17) 

From here, the induced drag can be computed by integrating the individual drag elements 

produced by each vortex filament. The expression for the induced drag per unit span is given by: 

 𝐷′𝑖 =  𝐿′𝑖sin (𝛼𝑖) (18) 
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The induced angle of attack, 𝛼𝑖, represents the difference between the global angle of attack, 𝛼, 

and the local or effective angle of attack, 𝛼𝑒𝑓𝑓. The importance of the induced angle of attack lies 

in its relationship to downwash and ultimately induced drag. This parameter is central to the 

proportionality between downwash and induced drag which can be seen clearly by studying the 

similar triangles in Figure 2.2. Increasing the angle of attack results in an increased induced angle 

of attack and a corresponding increase in both downwash and a proportionate amount of induced 

drag. 

  

Figure 2.2: Induced angle of attack and associated downwash. [9] 

 

The induced angle of attack is small for the cases considered in this paper so small angle theory 

can be employed to dismiss the sin function in the expression for induced drag per unit span. The 

lift force equation can then be substituted for the lift expression (Eq. 17). After adjusting and 

simplifying, the resulting equation for total induced drag is as follows: 

 

𝐷𝑖 = 𝜌∞𝑉∞ ∫ 𝛤(𝑦)𝛼𝑖(𝑦)𝑑𝑦

𝑏
2

−
𝑏
2

 

(19) 
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Equations 16-19 are the main aerodynamic parameters of a finite wing that fall out of lifting line 

theory. They are used in XFLR5 to determine the performance characteristics of the wings 

studied in this thesis.  
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2.2 Airfoil Verification 

Two-dimensional analysis was performed on each of the two Standard Cirrus airfoils to confirm 

that later three-dimensional analysis used the correct airfoil geometry. The lifting line method 

used in this research used the results of the two-dimensional analysis to establish the section lift 

characteristics of the three-dimensional wing. For that reason, it was important to validate that the 

airfoil coordinates were faithful to their real geometries. The coordinates for both airfoils were 

sourced from the Schempp-Hirth sailplane specifications [10], and tested in XFLR5 against the 

empirical results published in a technical paper about the Standard Cirrus sailplane [8], and in a 

NACA report of wind tunnel analysis [11].  

 

Figure 2.3: A comparison of the two airfoils used on the Standard Cirrus Sailplane drawn 

over a shared neutral line. 

 

The geometries shown in the above figure are to scale and they illustrate the noticeably 

thick nature of these low speed laminar airfoils. They were designed for low speed aerodynamics 

and to trip the flow to transition at a specified point. Some characteristics of the foils are tabulated 

below for further comparison.  
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Table 2.1: A tabulated comparison of airfoil characteristics. 

Property Wortmann FX S 02-196 Wortmann FX-66-17 A II-182 

Thickness 19.59% 18.21% 

Max thickness position 36.14% 35.34% 

Max camber 3.65% 3.80% 

Max camber position 47.35% 37.54% 

 

The imbedded version of XFOIL within XFLR5 was used to perform the analyses on each 

of the two airfoils of the Standard Cirrus sailplane. After importing and refining the panels of the 

airfoil geometries in the program, the analyses were defined by inputting a Reynolds number of 

1,500,000 and a Mach number of 0.10 which were selected to simulate the same conditions as 

those that were used in the comparative experimental studies. A standard 𝑁𝑐𝑟𝑖𝑡 value of 9 was 

selected for the analysis and the airfoils were swept through a range of angles from -3 degrees to 

+10 degrees to represent those used by the NACA wind tunnel study.  

 

Table 2.2: Parameters used for the airfoil validation study in XFLR5. 

Parameter Value 

XFLR5 foil analysis type 1 

𝑅𝑒 1,500,000 

Mach number 0.10 

𝑁𝑐𝑟𝑖𝑡 9 

Number of panels 300 

Range of α -3 to +10 

𝑉0 26.25 
𝑚

𝑠
 

ρ 1.225 
𝑘𝑔

𝑚3 

𝑣 
1.5x10−5

𝑚2

𝑠
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The results of the analysis indicated that the airfoil geometry taken from the coordinates 

provided by the Schempp-Hirth specifications were in accordance with the pressure port data 

recorded in the NACA wind tunnel study. To illustrate this, the discrete data points taken from the 

wind tunnel test were overlaid on the curves produced by XFLR5 for 𝐶𝑃 versus normalized chord 

location at several angles of attack. This analysis was performed for all the cases provided in the 

wind tunnel testing with Reynold’s number ranging from 0.5 × 106  to 6.0 × 106 , Mach numbers 

from 0.05 to 0.35, and the following angles of attack: -4.05°, -2.00°, 0.00°, 2.03°, 4.00°, 6.07°, 

7.07°, 8.05°, 9.18°, 10.16°, 11.23°, and 12.14°. A representative graph of this type at α = 0.00 ̊ 

can be seen in Fig 2.3 to confirm that the airfoil pressure field characteristics were validated by 

the empirical data for the conditions applied in the three-dimensional analysis.  

Figure 2.4: XFLR5 results compared against empirical NACA data for root airfoil at α = 

0.00 ̊. 
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2.3 Baseline Wing Design and Validation 

 

The validated airfoils were used to recreate the Standard Cirrus wing in XFLR5 for establishing a 

baseline of performance. The geometry of the Standard Cirrus wing was found in the sailplane 

operator’s manual produced by Schempp-Hirth [10]. The wing is composed of a blended 

combination of the two validated airfoils. From the root chord to the inboard side of the aileron, 

the wing uses a linear transition between the Wortmann FX S 02-196 and the Wortmann FX-66-

17 A II-182. The section from the inboard side of the aileron to the wingtip is entirely made up of 

the latter airfoil. For simplicity, the aileron control surfaces were not modeled for the analysis. 

 

Figure 2.5: Planform view of the Standard Cirrus wing indicating the configuration of the 

airfoils. 
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2.3.1 Wing Geometry Definition  

 

The Standard Cirrus wing has a 15-meter wingspan and a wing area of 9.745 square meters. The 

wing features a dihedral of 3 degrees, a slight sweep of 1.45 degrees, and a washout of 1.5 

degrees. These parameters were input to the XFLR5 wing design function on a per wing section 

basis. This way, the geometry was specified for both the inboard and outboard regions of the 

wing surfaces. XFLR5 has a default linear transition between airfoils when there exists an 

aerodynamic twist through a wing section. This allowed for the linear transition zone between root 

chord and inboard side of the aileron of the Standard Cirrus wing to be faithfully recreated in the 

program. Henceforth, the modeled Standard Cirrus wing will simply be referred to as the 

“baseline wing” in this report. For clarity, all data associated with the baseline wing will be color 

coded blue in all figures and plots. 

 

 

2.3.2 Panel Refinement Study 

After establishing the Standard Cirrus wing geometry in XFLR5, a panel refinement study was 

carried out to determine the density of panels required to produce convergent results using the 

lifting line theory method. The panel count was iteratively increased from an initial coarse pattern 

until the results of the analysis converged onto a consistent value. The coefficient of drag was 

used as the primary data point to determine convergence given the importance of the parameter 

to the results of this research. The panel distributions were set to uniform in both the x and y 

directions because of the square geometry of the Standard Cirrus planform. A table of the panel 

density settings against the resulting coefficient of drag is provided below.  
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Table 2.3: Panel refinement study. 

Iteration x-panels y-panels CD 

1 5 15 0.0095 

2 10 30 0.1019 

3 20 60 0.1019 

 

 

Figure 2.6: Semi-span planform view of the final panel distribution from the refinement 
study. 
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2.3.3 Determination of Root Bending Moment 

After validating the model against the flight test data, the root bending moment of the baseline 

wing was determined so that it could be used as the primary constraint in the design of the bell 

wings. XFLR5 calculates the root bending moment of a wing by integrating the moments about 

the wing root produced by aerodynamic forces acting along the span of the wing. The plot 

produced by the program indicated a root bending moment of 2470 Nm and is shown below. 

Figure 2.7: Bending moment against wingspan for baseline wing. The root bending moment 
corresponds to span location of zero. 
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2.3.4 Lift Distribution of the Baseline Wing 

For reference the lift distribution of the baseline wing was analyzed in XFLR5 to determine how 

closely it matched to an ideal elliptical curve. The calculated distribution was plotted on top of an 

ideal ellipse target curve defined as 

 
𝐿(𝑦) = [1 − (

2𝑦

𝑏
)2]

1/2

 
(20) 

where b is the wingspan [13].  

Figure 2.8: Comparison of baseline wing lift distribution versus ideal ellipse distribution. 

 

A cursory assessment of the lift distribution comparison suggests that there is a 

significant difference between the Standard Cirrus wing and an ideally loaded elliptical 

distribution. This qualitative discrepancy is primarily a result of differences in configuration 

between the model and the full Standard Cirrus sailplane. A discussion of the effects of the 

incongruous lift distributions is provided below. 

The baseline wing distribution is greater than the target ellipse around midspan because 

the aerodynamic effects of the fuselage and empennage of the Standard Cirrus glider are not 

factored into the analysis. The Standard Cirrus sailplane is configured with an all moving tail 
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plane that acts to provide longitudinal stability and pitching moment equilibrium. This key 

component to the sailplane design also possesses associated lift and drag components. The tail 

plane was designed to induce lift in the downward direction to trim out the pitching moment about 

the aircraft center of mass. Therefore, the main wing on the Standard Cirrus was intentionally 

designed with a roughly 6-meter span about the center of the wing that overshoots the ideal 

elliptical loading guideline. The sum of the positive and negative lift components from the main 

wing and the tail plane respectively yields a lift distribution that cosmetically fits the ideal ellipse 

curve more closely. The aerodynamic consequences of investigating the wing apart from the tail 

plane are insignificant to this research, however, as can be shown by the Oswald efficiency 

metric. 

The span efficiency number (𝑒) is a correction factor that indicates the difference in drag 

between a given wing and a perfect elliptically loaded wing of equivalent aspect ratio. It is defined 

as follows [18]: 

 
𝑒 =

(𝐶𝐷,𝑖)𝜋𝐴𝑅

𝐶𝐿
2  

(21) 

 

where the 𝐶𝐷,𝑖 term represents the induced drag coefficient. A span efficiency number of 1 

corresponds to a perfect elliptical distribution with most conventional aircraft lying in the 0.9-1.0 

range [14]. The modeled Standard Cirrus baseline wing was calculated to have an 𝑒 of 0.96 in 

XFLR5 which suggests that it was designed to have induced drag characteristics derived from an 

elliptical distribution. Furthermore, the tail plane has an area of roughly 0.5 𝑚2 which is 5% of the 

main wing with an area of 10 𝑚2. Using the respective wing areas as the characteristic 

dimensions for lift and drag calculations, one can conclude that the tail plane does not contribute 

significantly to the analysis. With a validated baseline wing established, a wing with bell shaped 

lift distribution was ready to be designed and analyzed.  

   



24 

 

Chapter 3 

 

BSLD WING DESIGNED WITH VARIED CHORD LENGTH 

 

An iterative design philosophy was adopted for this task by first constraining as many geometry 

parameters as possible. The primary constraint drew from the original formulation of the bell-

shaped lift distribution which placed a constraint on the bending moment of the wing. To preserve 

the integrity of the comparison between simulated wings, the bending moment of the modeled 

baseline wing was taken as the primary constraint used in the design of bell wings. This left three 

principle parameters to adjust along the wingspan in order to create the desired bell lift 

distribution: chord length, geometric twist, and aerodynamic twist.  

 

3.1 Bell Wing from Adjusted Chord Lengths 

For design simplicity, the first attempted bell wing was created by only adjusting chord lengths 

along the span of the wing. Properties of the wing geometry from the baseline wing were 

preserved wherever possible to maintain continuity in the comparison. These properties included 

dihedral angle, sweep angle, root chord length, and airfoil transitions along the wingspan. The 

wingspan itself was left unconstrained however to match the root bending moment of the bell 

wing with that that of the baseline wing. 

Starting with the original planform of the baseline wing, chord lengths were adjusted until 

the resulting lift distribution took on the ideal bell-shape. XFLR5 includes an option that allows for 

a target lift distribution curve to be overlaid on the distribution plot produced by the wing analysis. 

The target curve was set to: 

 
𝐿(𝑦) = [1 − (

2𝑦

𝑏
)

2

]

3/2

 
(22) 
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in the program which corresponds to the bell-shaped lift distribution specified in the Prandtl theory 

[15]. After arriving at an approximate distribution that matched the target template, the bending 

moment was determined for that wing. If it was below the target root bending moment, then the 

wingspan was increased, and the iterative chord adjustment process was repeated until a wing 

with the correct lift distribution and root bending moment was arrived at. Additional panels were 

included on the wing as necessary to provide sufficient adjustable chord lengths to arrive at a lift 

distribution that followed the curvature of the target bell curve. The resulting wing had a root 

bending moment of 2460 Nm (within 1% of the baseline wing), and a span of 16.8 meters or 

11.3% longer than the baseline wing. Despite an increase in wingspan, the total wetted area of 

the wing decreased by 6.5% to 9.115 m2. A semi-span planform is provided in the figure below. 

For ease of reference, data associated with the chord varied bell wing were represented in green 

color coding. This wing was also referred to as simply bell wing in further discussions unless 

clarification was required in context. 

Figure 3.1: Semi-span planform of the bell wing created by adjusting chord lengths. The 
leading edge is towards the top of the figure. 
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3.2 Paneling and Analyzing the Bell Wing 

A similar paneling method and panel density was adopted for the bell wing as the baseline wing. 

The narrow wingtips presented a challenge during this step however, because the panels at in 

the outboard most section of the wing were skewed in order to fit the geometry. This complication 

was mitigated by adjusting the panel distribution to mesh as smoothly as a possible with the 

adjacent section, but the analysis results still reflected discontinuities in the wingtip region. This is 

consistent with expectations of the analysis method however, because the lifting line theory is 

limited by highly tapered wing geometries.  

A fixed velocity lifting line analysis was used to analyze the bell wing because it allowed 

for a cruising speed to be specified. The other analysis parameters pertaining to flight conditions 

were preserved from the baseline wing analysis in the previous chapter. A table of these 

parameters is provided below. 

Table 3.1: Parameters used for the Bell Wing Analysis in XFLR5. 

Parameter Value 

XFLR5 analysis type Fixed velocity LLT 

𝑅𝑒   1.00x103 ~1.59x106 

𝑉  26.25 
𝑚

𝑠
  

𝜌 
1.225

𝑘𝑔

𝑚3
 

𝑣 
1.5 × 10−5

𝑚2

𝑠
 

 

The analysis failed in the wingtip region at around 85% semi-span as mentioned before because 

the Reynolds number there dropped below the envelope that was established in the two-

dimensional airfoil analysis. The lift distribution produced by XFLR5 reflects the subtle wingtip 

discontinuity and can be seen in the following plot with the target distribution represented by the 

dashed line. Detail of the paneling and geometry of the wingtip section shown in the figure directly 

below. 
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Figure 3.2: Detail of wingtip paneling and highly tapered geometry. 

 

 

Figure 3.3: Bell wing lift distribution plotted over the target bell curve. 
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3.3 Comparison of the Bell Wing and the Baseline Wing 

With the analyses completed, characteristics of interest between the chord varied bell wing and 

the baseline wing were compared. The following metrics were used: 𝐶𝐷𝑖,  

𝐶𝐿, 𝐶𝐷, 𝐶𝐿/𝐶𝐷, wingspan, wing area, AR, and wing loading. 

 

Table 3.2: Comparison of performance characteristics between the baseline and bell wing 

analyses. 

metric baseline bell 

𝐶𝐷,𝑖 0.0024 0.0029 

𝐶𝐿 0.411 0.447 

𝐶𝐷 0.0102 0.0113 

𝐶𝐿/𝐶𝐷 40.3 39.6 

Wingspan 15.0 m 16.8 m 

Wing Area 9.745 m2 9.115 m2 

AR 23.1 31.0 

Wing Loading 30.8 
𝑘𝑔

𝑚2 33.0 
𝑘𝑔

𝑚2 

 

Based on the tabulated data, the bell wing has a 2.0% worse lift to drag ratio, and a higher 

induced drag coefficient. The overall lift coefficient for the bell wing is greater owing to the 

decrease in wing area, but that difference did not result in better lift-to-drag ratio because of the 

added overall drag. In order to achieve the bell lift distribution while maintaining the same root 

chord and bending moment as the baseline wing, the bell wing required a 12% increase in 

wingspan. This figure is contrary to the Bowers paper that claims the bell wing of matching root 

bending moment should occur when the wingspan is increased by 22% [15]. Despite an increase 

in wingspan, the bell wing features a 6.5% decrease in wing area due to the strongly tapered 

wingtips. Finally, assuming that both wings have a mass of 300kg, the bell wing has greater wing 

loading owing to the decreased wing area. It should be noted, however, that the bulk of the load 
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is carried near the root and that the wings become unloaded at around 70% span. This effect can 

be seen in the following plot comparing the induced drag coefficient versus span for both the 

baseline and bell wings. The induced drag coefficient is defined as 

 
𝐶𝐷,𝑖 =

𝐷𝑖

2𝜌𝑉2𝑆
 . 

 

(23) 

where the induced drag force 𝐷𝑖, is the expression derived in equation 19. The plot also illustrates 

the discontinuity from the limitations of lifting line theory in the highly tapered wingtip regions of 

the bell wing. Furthermore, the chart illustrates the deviation of the baseline wing from a true 

elliptical induced drag distribution. In the case of a truly elliptically loaded wing, the expected 

induced drag/downwash curve is a constant single value across the whole span. 

 
Figure 3.4: A comparison of induced drag coefficient versus wingspan for the baseline and 
bell loaded wings. 
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Chapter 4 

 

BSLD WING DESIGNED WITH GEOMETRIC TWIST 

 

4.1 Bell Wing from Geometric Twist 

A second bell wing was designed using geometric twist to remedy the problems stemming from 

the highly tapered wingtip geometry of the first attempt. The bell wing resulting from strictly 

varying chord length along the span provided insight into the performance of a wing with the 

specified lift distribution, but the geometry was not practical. The wingtips tapered to a single 

point at a severe angle in the last section of wing which presented problems in analysis. 

Furthermore, such a wing would present unreasonable manufacturing challenges if a bell wing of 

this type was ever built. The results of substituting geometric twist for chord variation as a method 

of defining lift distribution are investigated in the following section. The data featured in the 

following plots resulting from analysis for this wing are color coded in red.  

Like the design method used to create the first bell wing, an iterative approach was 

adopted to build in geometric twist with XFLR5. The same initial geometry constraints on dihedral 

angle, sweep angle, root chord length, and airfoil type along the wingspan were carried over from 

the baseline wing. Then, starting with a 15m wingspan, geometric twist was added to the wing 

until the lift distribution matched the target curve defined in the previous section. At this point, the 

root bending moment of the wing was determined and compared against the constraint of 2470 

Nm carried over from the baseline wing. The initial attempt at designing the second bell wing 

yielded too small a root bending moment, so the wingspan was extended iteratively while 

adjusting twist angle at wing sections until both the bending moment and lift distribution 

requirements of the wing were met. The completed bell wing had wingspan of 16.8 meters, a 

bending moment of 2440 Nm (within 1% of the targeted value), and the following lift distribution. 
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Figure 4.1: Semi-span planform of the bell wing created by adjusting geometric twist. The 
leading edge is towards the top of the figure. 

Figure 4.2: Geometric bell wing lift distribution plotted over the target bell curve. 
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Unlike the lift distribution produced for the chord varied bell wing, the geometric bell wing slightly 

overshoots the ideal bell-shaped target curve over the span of the entire wing. This resulted from 

the limited resolution in the wing design tools provided in XFLR5. Both the root bending moment 

and the total lift produced by the wing were required to meet target values while the geometric 

twist angles were varied at each wing section. Unlike the simpler one-dimensional adjustment of 

chord lengths used for the first bell wing, adjustment of geometric twist required the XFLR5 

program to interpolate in multiple dimensions between wing section stations. Small variations in 

twist angle near the root propagated out towards the wingtips. This led to greater variation in 

overall lift distribution and a tendency to overshoot the target curve when the root chord was held 

constant with respect to the baseline wing.  

The wing used in the analysis has a higher overall CL than the target curve. The overshoot is 

most pronounced at the root of the wing where the modeled wing has a 5% higher local lift. The 

discrepancy tapers to a value of 3% at 1-meter outboard of the root and remains at the level to 

the wingtip. The overshoot on the local lift of the modeled geometric bell wing is therefore less 

than 5%. While the analyzed induced drag values were inflated by a similar amount from this 

discrepancy, the shape of the induced drag distribution was still accurately reflected in Fig 4.1 

because the overshoot was systematic. Thus, the aerodynamic nature of the drag from this wing 

could still be interpreted confidently.  

  

4.2 Comparison of the Bell Wing with Geometric Twist and the Baseline 

Wing 

After creating a wing that met the design requirements, performance characteristics were once 

compared against those of the baseline wing. The same metrics were tabulated as in the 

previous section and then added in a new column.  
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Table 4.1: Comparison of performance characteristics between the baseline and geometric 

bell wing analyses. 

metric baseline bell geometric bell 

𝐶𝐷𝑖 0.0024 0.0029 0.0020 

𝐶𝐷 0.0102 0.0113 0.0095 

𝐶𝐿 0.411 0.447 0.346 

𝐶𝐿/𝐶𝐷 40.3 39.6 36.3 

Wingspan 15.0 m 16.8 m 16.8 m 

Wing Area 9.745 m2 9.115 m2 11.3 m2 

AR 23.1 31.0 25.0 

Wing Loading 30.8 
𝑘𝑔

𝑚2 33.0 
𝑘𝑔

𝑚2 25.6 
𝑘𝑔

𝑚2 

 

The geometric bell wing featured a 20% drop in the induced drag coefficient but also had 

a lower lift to drag ratio. This can partly be explained by a 14.8% increase in wetted area over the 

chord-varied bell wing which decreased the lift coefficient by a corresponding amount. The 

remaining difference in lift-to-drag performance must then have stemmed from other sources of 

drag such as skin friction. A later section assesses the amount of added skin friction and changes 

in lift and drag forces from the different wing geometry. The wingspan that yielded the desired lift 

distribution and root bending moment was equivalent to the span of the first bell wing at 16.8m. 

The aspect ratio was only 8% greater than the baseline wing compared to the greater increase 

observed with the first bell wing. The increase in area corresponded to a 18.4% lighter wing 

loading assuming a mass of 300 kg.  

While the overall drag coefficients are of comparable magnitude between the three 

wings, the lift coefficient exhibits a larger range. The lift coefficient for the geometric bell wing is 

15.8% less than that of the baseline wing. Consideration of the definition of the lift coefficient 

sheds light on the source of this decrease: 

 
𝐶𝐿 =

2𝐿

𝜌𝑉2𝑆
 

(25) 
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Where S stands for the reference surface area of the wing in question. The other terms in the 

equation are constant between the wings by virtue of the constrained analysis parameters. 

Therefore, the increased wing area required to achieve the bell lift distribution through geometric 

twist has a significant detriment to the lift coefficient. This increase in wing area also creates more 

skin friction which counteracts the savings on induced drag.  

 The chord varied bell wing has a decreased wing area however, which factored into the 

8.8% increase in lift coefficient over the baseline. Given the tradeoffs between the chord variation 

and geometric twist design methods, the most aerodynamically efficient configuration is likely a 

hybrid bell wing that incorporates elements from both types of geometry variation. The chord 

varied wing could benefit from using geometric twist at the wingtip to avoid the thin taper while the 

geometric twist wing could benefit from shorter chord lengths along the span to reduce skin 

friction and increased wing area. The result would be a more manufacturable wing with less 

induced and skin friction drag than the baseline.  
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Figure 4.3: Comparison of induced drag against span location for baseline versus 
geometric bell wings 

 

The induced drag is similar for both the baseline and geometric bell wing from the root 

out to 6 meters along the span. At 6 meters to the wingtip, the trend for induced drag clearly 

diverges with the baseline wing increasing rapidly while the geometric bell gradually dips below 

the horizontal axis and then tending towards zero at the wingtip. These trends are consistent with 

the theory put forward by Bowers [15] where he states that there should be induced thrust 

expected at around the 70% span location for bell shaped lift distributions. The first bell shaped 

wing with chord variations exhibited a similar feature also around the 6-meter mark which 

corresponds to 71.4% of span – consistent with the established theory. 

 The significance of the unloaded wingtips can be interpreted in several different ways. 

First, in contrast with the baseline wing, the bell wings exhibit a gradual and continuous change in 

induced drag and therefore circulation over the span of the wing. Elliptically loaded wings have a 

sharp discontinuity at the wingtip where the strong wingtip vortices appear which call for the 
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application of winglets. According to these results, a bell-loaded wing would have no need for 

wingtip devices because it does not redirect energy into a vortex. Additionally, a bell wing could 

be designed with a control surface in the unloaded region of the wing to allow for the potential of 

coordinated turns with less or no rudder input from a vertical surface in the empennage. Negative 

induced drag can be interpreted as induced thrust and so it follows that an aileron in that region of 

the bell loaded wing would produce a yaw moment in the coordinated direction as the intended 

roll direction when deflected. A reduction in the size of the rudder in the empennage assembly of 

an aircraft with a bell-loaded wing could further reduce total airplane.  

 

4.3 Comparison of Baseline and Geometric Bell Speed Polars 

For further comparison, the speed polars of the baseline and geometric bell-shaped wings were 

overlaid on the same plot. The speed polar is an effective tool for analyzing the efficiency of a 

sailplane. It was included in this report because the baseline wing was derived from a sailplane 

and so this representation of data can aid in the understanding of the differences in modeled 

geometric bell wing. Due to the complications in analysis with the wingtip region of the first bell 

wing, its speed polar data was not included. 
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Figure 4.4: Comparison of speed polars for the baseline and geometric bell wings with the 
shared best glide line superimposed. Minimum sink and tangent points are indicated with color 
coded markers. 

 

The vertical axis represents the rate of sink (Vz) across a range of airspeeds (Vx). At different 

airspeeds, the wings sink at different rates depending on their geometries and aerodynamic 

characteristics such as lift distribution. The speed polar is a useful tool for determining the best 

speed to fly to minimize the sink rate for a given wing configuration. It also graphically represents 
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the best achievable glide ratio for a glider and what airspeed and sink rate are associated with 

that metric.  

The speed polars for the two wings have the same best glide slope of 43 though that 

occurred at a speed of 25 m/s for the geometric bell wing and slightly faster around 27 m/s for the 

baseline wing. These slopes were determined by finding the angle subtended by the horizontal 

axis and the line tangent to the polar curves. The minimum sink values are found at the maxima 

of the polar curves and for the geometric bell wing was slightly better than baseline wing at -0.45 

m/s versus -0.5 m/s. The glide performance of the geometric bell wing falls off at a faster rate 

than the baseline wing at higher speeds. At first blush, it appears that the bell wing would be 

better suited to less energetic soaring days if it were ever purposed for sailplane applications 

because it performs better at lower airspeeds. In contrast, the baseline wing maintains a lower 

sink rate at higher airspeeds, so a sailplane with this wing could cover more ground without 

sacrificing as much altitude.  
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Chapter 5 

ESTIMATION OF DIFFERENCES IN DRAG FORCES BETWEEN WINGS 

 

5.1 Induced Drag Calculations 

Up to now, the differences in induced drag between the wings has been considered from the 

standpoint of the drag coefficients. While this form of comparison is good for developing a sense 

of the magnitude to which different forms of drag contribute to the overall drag of the wing, an 

analysis of the induced drag force provides a clearer picture of how the wings compare to each 

other. The induced drag forces were calculated using the following definition: 

 
𝐷𝑖 =

1

2
𝜌𝑉2𝑆(𝐶𝐷𝑖) 

(26) 

 

where 𝐶𝐷𝑖 represents the induced drag coefficients calculated by XFLR5 in the previous chapter. 

The results of this calculation applied to each of the analyzed wings is tabulated below. 

Table 5.1: Comparison of induced drag forces. 

 Baseline Bell Geometric Bell 

𝐶𝐷𝑖 0.0024 0.0029 0.0020 

𝑆 9.745 𝑚2 9.115 𝑚2 11.30 𝑚2 

𝐷𝑖  9.991 𝑁 11.08 𝑁 9.479 𝑁 
 

The drag force induced by the chord varied bell wing is 10.3% greater than the baseline wing and 

the 5.3% less drag is induced by the geometric bell wing. This sets the stage for an investigation 

into the magnitude of skin friction drag that each of these wings produces.  

5.2 Skin Friction Analysis 

The lifting line analysis of the geometric bell wing indicated that it induces 5.3% less drag than the 

baseline wing. This was at the cost of a 14.8% increase in wing area however, so a flat plate 

turbulent skin friction comparison was conducted to estimate the additional viscous drag 
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produced by the greater surface area. This analysis was performed for geometric bell wing and 

the baseline wing by approximating the wings with flat plates of equivalent mean aerodynamic 

chord. For the bell wing with varied chord however, the wing was broken into multiple sections to 

account for the highly tapered outboard sections.  

 

5.3 Governing Equations and Methodology 

The method for estimating skin friction was adapted from J. Anderson’s Fundamentals of 

Aerodynamics in his coverage of incompressible flow over airfoils [16]. It is intended to provide an 

order-of-magnitude accurate estimation of the amount of skin friction produced by a wing in fully 

turbulent flow. From empirical data, the skin friction drag for incompressible turbulent flow over a 

flat plate is expressed by 

 
𝐶𝑓 =

0.074

𝑅𝑒𝑐
0.074

 
(27) 

where 𝑅𝑒𝑐 represents the Reynolds number based on chord length. Given their lightly tapered 

geometries, the mean aerodynamic chord was used for the calculations of skin friction drag for 

the baseline wing and the geometric bell wing.  

 
𝑅𝑒𝑐 =

𝜌∞ ∗ 𝑉∞ ∗ 𝑀𝐴𝐶

𝜇∞

 
(28) 

The overall skin friction was calculated from the coefficient of skin friction drag by integrating over 

the associated wing area and multiplying by the dynamic pressure of the freestream. 

 

 
𝐷𝑠𝑓 = ∫ 𝐶𝑓

𝜌𝑉2

2
𝑑𝐴

 

𝑤𝑖𝑛𝑔 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

= 𝑆𝐴𝑤𝑖𝑛𝑔 ∗ 𝐶𝑓 ∗
𝜌𝑉2

2
 

 

(29) 

For the chord varied bell wing, the same methodology was used over three sections as indicated 

in the following figure to account for the taper near the wingtips. 
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Figure 5.1: Sections used for the estimation of skin friction for the chord varied bell wing 

 

5.4 Results 

The differences in skin friction drag between the three studied wings are discussed here. The 

coefficients of skin friction for the baseline and geometric bell wings were within 1% of each other 

owing to similarly dimensioned mean aerodynamic chords. This meant that the total skin friction 

essentially scaled with direct relation to their proportions in wing area. The geometric bell wing 

had 14.8% greater surface area which translated to 15% higher skin friction in comparison to the 

baseline wing. 

After breaking the chord varied bell wing into the three sections and calculating for each 

one, it was found to induce 6.2% less skin friction than the baseline wing. This decrease in drag is 

proportional to the difference in wetted area between the two wings of 6.5%. The results of these 

calculations are summarized in the following table along with the results of the induced drag force 

calculations. 
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Table 5.2: Comparison of coefficients of drag and drag forces 

 Baseline Chord Varied Bell Geometric Bell 

𝐶𝑓 9.00 × 10−3 9.01 × 10−3 8.93 × 10−3 

𝐷𝑠𝑓 37.0 𝑁 34.7 𝑁 42.6 𝑁 

𝐶𝐷𝑖  0.0024 0.0029 0.0020 

𝐷𝑖  9.991 𝑁 11.08 𝑁 9.479 𝑁 

 

At the flight parameters defined for this research, the skin friction component of the overall drag 

factors in around four times greater than the induced drag component. Given that the wings in 

this analysis all share the same root bending moment and total lift force, the savings in induced 

drag provided by the geometric bell wing do not outweigh the increased skin friction drag that 

arises from the increased wing area. This further analysis reinforces the potential benefits of a 

wing with bell shaped loading designed with a hybrid combination of chord variation and 

geometric twist. The table above indicates that the chord varied bell wing had less skin friction 

drag but the induced drag was increased by 10% over the baseline wing. The strength of the 

geometric bell lies in the reduction of induced drag however at the sacrifice of skin friction 

efficiency. A combination of the two configurations could optimize both sources of drag a yield a 

higher performing wing given the same initial constraints and flight data.  
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Chapter 6 

DISCUSSION OF RESULTS 

This chapter examines how the results of this research compare with the results of similar past 

studies including Prandtl’s original findings about the aerodynamic efficiency of a bell-shaped 

wing loading. In other research, different approaches to conducting a comparison between lift 

distributions produced varying conclusions about the performance of bell-shaped lift distributions. 

Among the reviewed papers, two key characteristics of theoretical bell wings were commonly 

quoted for their characterization: wingspan and reduction in induced drag both published as 

percentages of an ideal baseline. These figures of merit for both the literature-reviewed bell wings 

and the geometries studied in this thesis are in the following table. 

Table 5.3: Comparison of changes in wingspan and induced drag between multiple studies 

of bell-shaped lift distributions. Italicized results refer to those from this report. 

Bell Wing Name Wingspan % Increase Over 
Elliptical Baseline 

Induced Drag % Reduction 
Over Elliptical Baseline 

Original Prandtl/Bowers [2], [15] 22.5% 11.1% 

Klein & Viswanathan 1973 [5] 33% 15.6% 

Klein & Viswanathan 1975 [6] 16% 7.1% 

Chord Varied Bell Wing 12% -10.4% 

Geometric Twist Bell Wing 12% 5.3% 

 

 The data presented in the table represent the results of solving the same problem with 

different initial constraints and methodologies. In the case of the chord-varied bell wing, there is a 

net increase in total induced drag. This result does not follow the trend of the rest of the other 

research and likely stems from the issues encountered with XFLR5 in the wingtip region of the 

wing geometry. Interestingly, the geometric twist bell wing produced results that most closely 

match those of the 1975 Klein & Viswanathan paper. Their conclusion was reached by placing 
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initial constraints on the integrals of the spanwise shear force and bending moment distributions. 

Of the reviewed papers, this approach was the most thorough and considered the most factors 

contributing into wing structural weight.  

 To put the results of this research in context, the limits of the methodology must be 

reiterated. Firstly, the simulations were run only for steady state conditions modeled after those 

that a Standard Cirrus glider would commonly fly in. The wings were also only analyzed at zero 

degrees of angle of attack. These parameters were chosen to simplify the comparison so that a 

fundamental understanding of the differences between the lift distributions could be taken away 

from the work. Therefore, the conclusions drawn about the induced and skin friction drag 

components only apply to the prescribed flight conditions. Different aircraft attitudes and air data 

could lead to alternative conclusions about the aerodynamic performance of the wings.  

 Furthermore, as mentioned in earlier parts of the report, the lifting line method in XFLR5 

presented challenges relating to the chord varied bell wing geometry. The chord length at wing 

tips was too short for the airfoil analysis tool to include in the envelope for the three-dimensional 

simulations. The short chord length resulted in a Reynolds number that lay outside of the range of 

two-dimensional foil data and so the wing performance at the wingtips could not be properly 

calculated by the software using the specified method. So, the aerodynamic results for the chord 

varied bell wing are unreliable and the induced drag force was overestimated because the 

discontinuity at the wingtip imitated a wingtip vortex. Perhaps the vortex lattice method would be 

better suited to solving for the unusual geometry presented by this wing. 

 The bell wings studied in this thesis were designed with only chord variation and 

geometric twist. While the reviewed papers suggest that there are wings of bell-shaped lift 

distribution that would significantly reduce induced drag, they do not define the geometry of such 

a wing. It was determined through this work that the design approach to wings with bell loading 

can yield results with variable amounts induced and skin friction drag from incongruous wing 

areas. Future research could consider incorporating aerodynamic twist in addition to chord 

variation and geometric twist to optimize a wing with the target bell distribution. Such a wing 
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would draw on the wing area reducing benefits of chord variation, while exploiting the geometric 

twist for improved ability to analyze and manufacture the model. 

 More complex geometries would require closer consideration of the effects of viscous 

flow. XFLR5 was selected for this application because of its simplicity and suitability to produce 

lift and drag data from laminar affects. Once a more mature understanding of how different wing 

geometries alter lift distribution and induced drag is reached, specified designs requiring 

investigation of viscous characteristics should then be studied further with CFD. That will enable a 

much more detailed understanding of how skin friction factors into overall drag calculations 

among different bell wings. 

A normalized plot of the reviewed lift distributions was also produced for direct qualitative 

comparison. In the same style as the Klein & Viswanathan paper, both axes were normalized to 

provide a more intuitive picture. The semi-spans on the horizontal axis were normalized against 

the wingspans of each respective wing. The local lift distributions on the vertical axis were 

normalized against the root lift distribution for each respective wing.  

Figure 6.1: Normalized comparison of the studied lift distributions 
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Chapter 7 

CONCLUSION 

XFLR5 was used to perform a one-to-one comparison between wings with bell-shaped lift 

distribution and an elliptically loaded baseline wing modeled after the Standard Cirrus sailplane. 

Results of interest include the changes made to the baseline wing geometry to produce the 

desired lift distribution, and the reduction in induced drag. The results of this study were 

compared to other research that carried out the same comparison but with alternative 

methodology.  

 The first major conclusion was that analyzing a chord-varied bell wing using the lifting line 

method provided by XFLR5 was not workable. The geometry tapered severely enough at the 

wingtip that the Reynolds number reached a value that could not be covered in the two-

dimensional airfoil batch analysis.  Furthermore, such a geometry was concluded to be 

impractical because manufacturing such a wing would be challenging considering how the wingtip 

is thin and narrow and converges to a single point. Due to the issues that arose with wingtip 

section there were few conclusions about the performance of the bell-shaped lift distribution that 

could be drawn from its analysis. Surprisingly, the wetted area of the resulting bell wing was 6.5% 

smaller than the baseline wing despite having a 12% longer wingspan.  

 The bell wing with geometric twist had a more amenable geometry in XFLR5 and 

demonstrated a 5% reduction in induced drag and a 12% increase in wingspan over the baseline 

wing. This result does not agree with the original Prandtl theory which stated an 11% reduction 

with a 22% increase in wingspan. The discrepancy lies in the different approaches taken between 

methods where root bending moment was constrained in this paper as opposed to consideration 

of how the local spar weight contributes to local bending moment. Of the reviewed information on 

the subject, the results from XFLR5 analysis match most closely with those found in the 1975 

Klein & Viswanathan paper which claims a 7.1% reduction in induced drag corresponding to a 

16% increase in wingspan.  
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 The increase in wingspan and wing area resulted in a corresponding 15% increase in 

skin friction for the specified simulation conditions. This outweighs the savings in induced drag 

threefold and points to importance of considering all contributions to overall drag when designing 

a wing based on a specified lift distribution. It also highlights the pros and cons of utilizing 

different wing design parameters such as chord variation and geometric twist. The chord varied 

wing had less wing area than the baseline but higher induced drag – the opposite effect to using 

purely geometric twist. An aerodynamic efficiency optimized bell wing will need to incorporate 

some combination of these design elements.  

 Considering that there are large number of parameters that can be adjusted when 

designing a wing with bell-shaped lift distribution, it is conceivable that there are an equally 

diverse number of possible wings each with their own characteristics. Given the results of the bell 

wing from this paper and the other reviewed resources however, it appears that there are certain 

aerodynamic benefits to using a bell-shaped wing loading if the designer is able to design around 

total wing structure in some way rather than around a constrained span.  

 This thesis only provides a surface level understanding of the aerodynamic performance 

of wings with bell-shaped lift distributions. Further research into viscous effects is necessary for a 

more comprehensive analysis of total drag. The analysis performed in this study indicated that 

the additional area of the bell wing with geometric twist increased the skin friction by 15% over 

the baseline. This additional drag might negate the benefit of using the bell distribution but a CFD 

or wind tunnel study would provide a more conclusive answer to that question. 
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APPENDIX A: Airfoil Coordinates [10] 

Wortmann FX S 02-196 

      Chord    Upper     Lower Chord    Upper     Lower 

 1  1.00000   .00000    .00000 29   .37059   .13327   -.06255 

 2   .99893   .00026    .00019 30   .33928   .13218   -.06317 

 3   .99572   .00106    .00069 31   .30866   .12981   -.06292 

 4   .99039   .00234    .00146 32   .27886   .12639   -.06198 

 5   .98296   .00411    .00233 33   .25000   .12207   -.06048 

 6   .97347   .00637    .00318 34   .22221   .11695   -.05846 

 7   .96194   .00912    .00386 35   .19562   .11108   -.05599 

 8   .94844   .01238    .00429 36   .17033   .10455   -.05312 

 9   .93301   .01616    .00439 37   .14645   .09747   -.04992 

10   .91573   .02048    .00412 38   .12408   .08993   -.04646 

11   .89668   .02535    .00346 39   .10332   .08202   -.04280 

12   .87592   .03076    .00238 40   .08427   .07384   -.03898 

13   .85355   .03671    .00085 41   .06699   .06540   -.03504 

14   .82967   .04314   -.00117 42   .05156   .05679   -.03098 

15   .80438   .05000   -.00367 43   .03806   .04822   -.02682 

16   .77779   .05722   -.00666 44   .02653   .03996   -.02256 

17   .75000   .06469   -.01012 45   .01704   .03201   -.01827 

18   .72114   .07234   -.01403 46   .00961   .02395   -.01410 

19   .69134   .08007   -.01837 47   .00428   .01553   -.01004 

20   .66072   .08779   -.02308 48   .00107   .00723   -.00561 

21   .62941   .09539   -.02811 49   .00000   .00000    .00000 

22   .59755   .10276   -.03335  

23   .56526   .10977   -.03871  

24   .53270   .11628   -.04405  

25   .50000   .12212   -.04922  

26   .46730   .12703   -.05395  

27   .43474   .13068   -.05793  

28   .40245   .13280   -.06083  
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Wortmann FX 66-17 A II-182 

      Chord    Upper     Lower       Chord    Upper     Lower 

 1  1.00000   .00000    .00000 30   .33928   .12873   -.05319 

 2   .99893   .00016    .00016 31   .30866   .12706   -.05293 

 3   .99572   .00105    .00036 32   .27886   .12405   -.05218 

 4   .99039   .00263    .00051 33   .25000   .11985   -.05099 

 5   .98296   .00484    .00062 34   .22221   .11461   -.04943 

 6   .97347   .00755    .00068 35   .19562   .10851   -.04753 

 7   .96194   .01062    .00069 36   .17033   .10169   -.04531 

 8   .94844   .01391    .00065 37   .14645   .09426   -.04281 

 9   .93301   .01754    .00047 38   .12408   .08635   -.04004 

10   .91573   .02151    .00013 39   .10332   .07805   -.03702 

11   .89668   .02578   -.00035 40   .08427   .06948   -.03379 

12   .87592   .03038   -.00105 41   .06699   .06076   -.03035 

13   .85355   .03534   -.00203 42   .05156   .05201   -.02674 

14   .82967   .04076   -.00341 43   .03806   .04339   -.02295 

15   .80438   .04662   -.00522 44   .02653   .03490   -.01911 

16   .77779   .05282   -.00744 45   .01704   .02665   -.01528 

17   .75000   .05934   -.01011 46   .00961   .01902   -.01137 

18   .72114   .06614   -.01327 47   .00428   .01201   -.00759 

19   .69134   .07316   -.01695 48   .00107   .00584   -.00373 

20   .66072   .08032   -.02114 49   .00000   .00069    .00069 

21   .62941   .08755   -.02579  

22   .59755   .09477   -.03073  

23   .56526   .10189   -.03574  

24   .53270   .10876   -.04046  

25   .50000   .11512   -.04460  

26   .46730   .12061   -.04792  

27   .43474   .12488   -.05036  

28   .40245   .12770   -.05198  

29   .37059   .12897   -.05290  
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APPENDIX B: XFLR5 Wing Design Parameters 

 

Baseline Wing 

 

 

Chord-Varied Bell Wing 

 

Geometric Bell Wing 
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APPENDIX C: List of Terms 

 

Di − induced drag 

ρ∞ − freestream density 

V∞ − freestream velocity 

b − wingspan 

w − induced downwash velocity 

y − span location 

αi − induced angle of attack 

L − total lift 

r − radius of gyration 

σ − ratio of elliptical wingspan to bell wingspan 

MR − root bending moment  

L′ − Local lift force  

D′i − local induced drag 

Γ − local circulation 

αeff − effective angle of attack 

α − angle of attack 

e − span efficiency number 

AR − aspect ratio 

CD,i − coefficient of induced drag 

CL − total coefficient of lift 

v − kinetmatic viscosity 

Re − Reynolds number 

CD − total coefficient of drag 

S − reference area 
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Cf − skin friction coefficient 

MAC − mean aerodynamic chord 

Dsf − drag from skin friction 


