9,907 research outputs found
The Size of a Polymer of String-Bits: A Numerical Investigation
In string-bit models, string is described as a polymer of point-like
constituents. We attempt to use string-bit ideas to investigate how the size of
string is affected by string interactions in a non-perturbative context.
Lacking adequate methods to deal with the full complications of bit
rearrangement interactions, we study instead a simplified analog model with
only ``direct'' potential interactions among the bits. We use the variational
principle in an approximate calculation of the mean-square size of a polymer as
a function of the number of constituents/bits for various interaction strengths
g in three specific models.Comment: 14 pages, LaTeX, 9 postscript figure
Moduli Spaces for D-branes at the Tip of a Cone
For physicists: We show that the quiver gauge theory derived from a
Calabi-Yau cone via an exceptional collection of line bundles on the base has
the original cone as a component of its classical moduli space. For
mathematicians: We use data from the derived category of sheaves on a Fano
surface to construct a quiver, and show that its moduli space of
representations has a component which is isomorphic to the anticanonical cone
over the surface.Comment: 8 page
Winding effects on brane/anti-brane pairs
We study a brane/anti-brane configuration which is separated along a compact
direction by constructing a tachyon effective action which takes into account
transverse scalars. Such an action is relevant in the study of HQCD model of
Sakai and Sugimoto of chiral symmetry breaking, where the size of the compact
circle sets the confinement scale. Our approach is motivated by string theory
orbifold constructions and gives a route to model inhomogeneous tachyon decay.
We illustrate the techniques involved with a relatively simple example of a
harmonic oscillator on a circle. We will then repeat the analysis for the
Sakai-Sugimoto model and show that by integrating out the winding modes will
provide us with a renormalized action with a lower energy than that of
truncating to zero winding sector.Comment: 21 pages, 3 figures. v3: discussion and references added, published
versio
Universality and Clustering in 1+1 Dimensional Superstring-Bit Models
We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB
superstring. This low dimension model escapes the problems encountered in
higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For
noninteracting polymers of bits, the exactly soluble linear superpotential
describing bit interactions is in a large universality class of superpotentials
which includes ones bounded at spatial infinity; (3) The latter are used to
construct a superstring-bit model with the clustering properties needed to
define an -matrix for closed polymers of superstring-bits.Comment: 11 pages, Latex documen
Closed Bosonic String Partition Function in Time Independent Exact PP-Wave Background
The modular invariance of the one-loop partition function of the closed
bosonic string in four dimensions in the presence of certain homogeneous exact
pp-wave backgrounds is studied. In the absence of an axion field the partition
function is found to be modular invariant. In the presence of an axion field
modular invariace is broken. This can be attributed to the light-cone gauge
which breaks the symmetry in the -, -directions. Recovery of this
broken modular invariance suggests the introduction of twists in the
world-sheet directions. However, one needs to go beyond the light-cone gauge to
introduce such twists.Comment: 17 pages, added reference
Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae
S-type AGB stars have a C/O ratio which suggests that they are transition
objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such,
their circumstellar compositions of gas and dust are thought to be sensitive to
their precise C/O ratio, and it is therefore of particular interest to examine
their circumstellar properties.
We present new Herschel HIFI and PACS sub-millimetre and far-infrared line
observations of several molecular species towards the S-type AGB star W Aql. We
use these observations, which probe a wide range of gas temperatures, to
constrain the circumstellar properties of W Aql, including mass-loss rate and
molecular abundances. We used radiative transfer codes to model the
circumstellar dust and molecular line emission to determine circumstellar
properties and molecular abundances. We assumed a spherically symmetric
envelope formed by a constant mass-loss rate driven by an accelerating wind.
Our model includes fully integrated H2O line cooling as part of the solution of
the energy balance. We detect circumstellar molecular lines from CO, H2O, SiO,
HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer
calculations result in an estimated mass-loss rate for W Aql of 4.0e-6 Msol
yr-1 based on the 12CO lines. The estimated 12CO/13CO ratio is 29, which is in
line with ratios previously derived for S-type AGB stars. We find an H2O
abundance of 1.5e-5, which is intermediate to the abundances expected for M and
C stars, and an ortho/para ratio for H2O that is consistent with formation at
warm temperatures. We find an HCN abundance of 3e-6, and, although no CN lines
are detected using HIFI, we are able to put some constraints on the abundance,
6e-6, and distribution of CN in W Aql's circumstellar envelope using
ground-based data. We find an SiO abundance of 3e-6, and an NH3 abundance of
1.7e-5, confined to a small envelope.Comment: 17 pages, 15 figure
Parameters characterizing electromagnetic wave polarization
No description supplie
Quantum Hall Effect in a Holographic Model
We consider a holographic description of a system of strongly coupled
fermions in 2+1 dimensions based on a D7-brane probe in the background of
D3-branes, and construct stable embeddings by turning on worldvolume fluxes. We
study the system at finite temperature and charge density, and in the presence
of a background magnetic field. We show that Minkowski-like embeddings that
terminate above the horizon describe a family of quantum Hall states with
filling fractions that are parameterized by a single discrete parameter. The
quantization of the Hall conductivity is a direct consequence of the
topological quantization of the fluxes. When the magnetic field is varied
relative to the charge density away from these discrete filling fractions, the
embeddings deform continuously into black-hole-like embeddings that enter the
horizon and that describe metallic states. We also study the thermodynamics of
this system and show that there is a first order phase transition at a critical
temperature from the quantum Hall state to the metallic state.Comment: v2: 27 pages, 12 figures. There is a major revision in the
quantitative analysis. The qualitative results and conclusions are unchanged,
with one exception: we show that the quantum Hall state embeddings, which
exist for discrete values of the filling fraction, deform continuously into
metallic state embeddings away from these filling fraction
Magnetized Domain Walls in the Deconfined Sakai-Sugimoto Model at Finite Baryon Density
The magnetized pure pion gradient () phase in the deconfined
Sakai-Sugimoto model is explored at zero and finite temperature. We found that
the temperature has very small effects on the phase. The thermodynamical
properties of the phase shows that the excitations behave like a scalar
solitonic free particles. By comparing the free energy of the pion gradient
phase to the competing multiquark-pion gradient (MQ-) phase,
it becomes apparent that the pure pion gradient is less thermodynamically
preferred than the MQ- phase. However, in the parameter space
where the baryonic chemical potential is smaller than the onset value of the
multiquark, the dominating magnetized nuclear matter is the pion gradient
phase.Comment: 20 pages, 9 figure
- …