15,791 research outputs found

    Critical point for the strong field magnetoresistance of a normal conductor/perfect insulator/perfect conductor composite with a random columnar microstructure

    Full text link
    A recently developed self-consistent effective medium approximation, for composites with a columnar microstructure, is applied to such a three-constituent mixture of isotropic normal conductor, perfect insulator, and perfect conductor, where a strong magnetic field {\bf B} is present in the plane perpendicular to the columnar axis. When the insulating and perfectly conducting constituents do not percolate in that plane, the microstructure-induced in-plane magnetoresistance is found to saturate for large {\bf B}, if the volume fraction of the perfect conductor pSp_S is greater than that of the perfect insulator pIp_I. By contrast, if pS<pIp_S<p_I, that magnetoresistance keeps increasing as B2{\bf B}^2 without ever saturating. This abrupt change in the macroscopic response, which occurs when pS=pIp_S=p_I, is a critical point, with the associated critical exponents and scaling behavior that are characteristic of such points. The physical reasons for the singular behavior of the macroscopic response are discussed. A new type of percolation process is apparently involved in this phenomenon.Comment: 4 pages, 1 figur

    Reletting the Abandoned or Defaulted Public Works Project in New York- To Bid or Not to Bid?

    Get PDF
    The general requirement that contracts for public works be let pursuant to advertisements for bids to the lowest responsible bidder has long been the law in New York and other jurisdictions. After determining that the mandatory statutory pronouncements apply to a particular contract, there is an entire second level problem of the propriety of bids and the awarding of the contract pursuant thereto. Suppose a contractor has defaulted or abandoned a valid public works contract. Must the public entity now readvertise for bids for the completion of the work? The answer in most instances is no, and this raises the disconcerting specter of a single unsupervised public official having the power to let potentially huge contracts. Of course the size of the relet contract is not the prime consideration. The key point is that the laboriously developed bidding laws can be circumvented in default and abandonment situations, resulting in favortism for the contractor and a bad bargain for the taxpayers. However, the other side of the question is equally vexing. An abandoned or defaulted contract may require immediate continuation or remedial action. If such situations do not fit into the public emergency exception, must the public body expend the time, effort, and expense to analyze the supplies needed or work remaining, formulate proposed contracts, and advertise for bids? This article will analyse this difficulty in the context of the confusing and conflicting status of the legal requirements in New York for the reletting of abandoned or defaulted work

    On the Bergman-Milton bounds for the homogenization of dielectric composite materials

    Full text link
    The Bergman-Milton bounds provide limits on the effective permittivity of a composite material comprising two isotropic dielectric materials. These provide tight bounds for composites arising from many conventional materials. We reconsider the Bergman-Milton bounds in light of the recent emergence of metamaterials, in which unconventional parameter ranges for relative permittivities are encountered. Specifically, it is demonstrated that: (a) for nondissipative materials the bounds may be unlimited if the constituent materials have relative permittivities of opposite signs; (b) for weakly dissipative materials characterized by relative permittivities with real parts of opposite signs, the bounds may be exceedingly large

    Dipoles, Twists and Noncommutative Gauge Theory

    Get PDF
    T-duality of gauge theories on a noncommutative TdT^d can be extended to include fields with twisted boundary conditions. The resulting T-dual theories contain novel nonlocal fields. These fields represent dipoles of constant magnitude. Several unique properties of field theories on noncommutative spaces have simpler counterparts in the dipole-theories.Comment: 20pp LaTeX, amsfonts and amssymb, JHEP format and ref adde

    Grackles

    Get PDF
    Numbering in the tens of millions of birds, grackle populations in North America can cause a variety of conflicts with people. Grackles eat agricultural crops and livestock feed, damage property, spread pathogens, and collide with aircraft. Their large roosts can be a nuisance in urban and suburban areas. A combination of dispersal techniques, exclusion, and lethal removal may help to reduce grackle damage. Grackles adapt easily to human-dominated environments, and exploit human food and other features of human landscapes. Thus, an integrated damage management approach to grackle damage focuses on reducing and eliminating the damage, rather than simply controlling grackle populations. Three species of grackles are present in North America: the common grackle, the boat-tailed grackle, and the great-tailed grackle. A fourth species, the greater Antillean grackle (Q. niger) is present in Puerto Rico. All are part of the Family Icteridae that includes blackbirds, orioles, cowbirds, meadowlarks, and bobolinks. The population status of all three grackle species is considered common to overabundant

    High field magnetotransport in composite conductors: the effective medium approximation revisited

    Full text link
    The self consistent effective medium approximation (SEMA) is used to study three-dimensional random conducting composites under the influence of a strong magnetic field {\bf B}, in the case where all constituents exhibit isotropic response. Asymptotic analysis is used to obtain almost closed form results for the strong field magnetoresistance and Hall resistance in various types of two- and three-constituent isotropic mixtures for the entire range of compositions. Numerical solutions of the SEMA equations are also obtained, in some cases, and compared with those results. In two-constituent free-electron-metal/perfect-insulator mixtures, the magnetoresistance is asymptotically proportional to B|{\bf B}| at {\em all concentrations above the percolation threshold}. In three-constituent metal/insulator/superconductor mixtures a line of critical points is found, where the strong field magnetoresistance switches abruptly from saturating to non-saturating dependence on B|{\bf B}|, at a certain value of the insulator-to-superconductor concentration ratio. This transition appears to be related to the phenomenon of anisotropic percolation.Comment: 16 pages, 3 figure

    The Stringy Quantum Hall Fluid

    Get PDF
    Using branes in massive Type IIA string theory, and a novel decoupling limit, we provide an explicit correspondence between non-commutative Chern-Simons theory and the fractional quantum Hall fluid. The role of the electrons is played by D-particles, the background magnetic field corresponds to a RR 2-form flux, and the two-dimensional fluid is described by non-commutative D2-branes. The filling fraction is given by the ratio of the number of D2-branes and the number of D8-branes, and therefore by the ratio rank/level of the Chern-Simons gauge theory. Quasiparticles and quasiholes are realized as endpoints of fundamental strings on the D2-branes, and are found to possess fractional D-particle charges and fractional statistics.Comment: 24 pages, 2 figures; references adde
    corecore