308 research outputs found

    Magnetized Domain Walls in the Deconfined Sakai-Sugimoto Model at Finite Baryon Density

    Get PDF
    The magnetized pure pion gradient (5Ď•\mathcal{5}\phi) phase in the deconfined Sakai-Sugimoto model is explored at zero and finite temperature. We found that the temperature has very small effects on the phase. The thermodynamical properties of the phase shows that the excitations behave like a scalar solitonic free particles. By comparing the free energy of the pion gradient phase to the competing multiquark-pion gradient (MQ-5Ď•\mathcal{5}\phi) phase, it becomes apparent that the pure pion gradient is less thermodynamically preferred than the MQ-5Ď•\mathcal{5}\phi phase. However, in the parameter space where the baryonic chemical potential is smaller than the onset value of the multiquark, the dominating magnetized nuclear matter is the pion gradient phase.Comment: 20 pages, 9 figure

    Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model

    Full text link
    In the chiral magnetic effect an imbalance in the number of left- and right-handed quarks gives rise to an electromagnetic current parallel to the magnetic field produced in noncentral heavy-ion collisions. The chiral imbalance may be induced by topologically nontrivial gluon configurations via the QCD axial anomaly, while the resulting electromagnetic current itself is a consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain limit is dual to large-N_c QCD, we discuss the proper implementation of the QED axial anomaly, the (ambiguous) definition of chiral currents, and the calculation of the chiral magnetic effect. We show that this model correctly contains the so-called consistent anomaly, but requires the introduction of a (holographic) finite counterterm to yield the correct covariant anomaly. Introducing net chirality through an axial chemical potential, we find a nonvanishing vector current only before including this counterterm. This seems to imply the absence of the chiral magnetic effect in this model. On the other hand, for a conventional quark chemical potential and large magnetic field, which is of interest in the physics of compact stars, we obtain a nontrivial result for the axial current that is in agreement with previous calculations and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent conductivity at the end of section 4; references added; version to appear in JHE

    Holographic chiral magnetic spiral

    Full text link
    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential.Comment: 24 pages, 15 figure

    Holographic zero sound at finite temperature in the Sakai-Sugimoto model

    Get PDF
    In this paper, we study the fate of the holographic zero sound mode at finite temperature and non-zero baryon density in the deconfined phase of the Sakai-Sugimoto model of holographic QCD. We establish the existence of such a mode for a wide range of temperatures and investigate the dispersion relation, quasi-normal modes, and spectral functions of the collective excitations in four different regimes, namely, the collisionless quantum, collisionless thermal, and two distinct hydrodynamic regimes. For sufficiently high temperatures, the zero sound completely disappears, and the low energy physics is dominated by an emergent diffusive mode. We compare our findings to Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references added, v3: some clarifications relating to the different regimes added, matches version accepted for publication in JHEP, v4: corrected typo in eq. (3.18

    Magnetic properties of holographic multiquarks in the quark-gluon plasma

    Full text link
    We study the magnetic properties of the coloured multiquark states in the quark-gluon plasma where the gluons are deconfined and the chiral symmetry is still broken, using the Sakai-Sugimoto model. There are two possible magnetized multiquark configurations. Both configurations converge to the same configuration at the critical field and temperature before they dissociate altogether either into less coloured multiquarks or into other phases for a fixed density. It is also found that the multiquarks with higher colour charges respond more to the external magnetic field in both the magnetization and the degree of chiral symmetry breaking. Magnetic field also makes it more difficult for multiquark states with large colour charges to satisfy the equilibrium condition of the configuration in the gravity dual picture. As long as the chemical potential μ>μonset\mu > \mu_{onset}, the magnetized multiquarks phase is thermodynamically preferred over the magnetized vacuum. Pure pion gradient and the chiral-symmetric quark-gluon plasma (χS\chi_S-QGP) phase for the general Sakai-Sugimoto model are discussed and compared with the multiquark phase in the presence of the magnetic field. It is found that at large densities and moderate fields, the mixed phase of multiquarks and the pion gradient is thermodynamically preferred over the χS\chi_S-QGP.Comment: 26 pages, 16 figures, revised version with significant changes and extension to other magnetized nuclear phase

    Holographic DC conductivities from the open string metric

    Full text link
    We study the DC conductivities of various holographic models using the open string metric (OSM), which is an effective metric geometrizing density and electromagnetic field effect. We propose a new way to compute the nonlinear conductivity using OSM. As far as the final conductivity formula is concerned, it is equivalent to the Karch-O'Bannon's real-action method. However, it yields a geometrical insight and technical simplifications. Especially, a real-action condition is interpreted as a regular geometry condition of OSM. As applications of the OSM method, we study several holographic models on the quantum Hall effect and strange metal. By comparing a Lifshitz background and the Light-Cone AdS, we show how an extra parameter can change the temperature scaling behavior of conductivity. Finally we discuss how OSM can be used to study other transport coefficients, such as diffusion constant, and effective temperature induced by the effective world volume horizon.Comment: 33 page

    Inverse magnetic catalysis in dense holographic matter

    Full text link
    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition into the lowest Landau level. We estimate IMC to persist up to 10^{19} G at low temperatures.Comment: 42 pages, 11 figures, v3: extended discussion; new appendix D; references added; version to appear in JHE

    Holographic flows to IR Lifshitz spacetimes

    Full text link
    Recently we studied `vanishing' horizon limits of `boosted' black D3-brane geometry \cite{hsnr}. The type IIB solutions obtained by taking these special double limits were found to describe nonrelativistic Lifshitz spacetimes at zero temperature. In the present work we study these limits for TsT black-hole solutions which include BB-field. The new Galilean solutions describe a holographic RG flow from Schr\"odinger (a=2a=2) spacetime in UV to a Lifshitz universe (a=3a=3) in the IR.Comment: 10 pages; v2: A bad typo in eq.8 corrected; v3: Discussion and reference on Kaigorodov spaces included, correction in sec-3, to be published in JHE

    Quark Number Susceptibility with Finite Chemical Potential in Holographic QCD

    Full text link
    We study the quark number susceptibility in holographic QCD with a finite chemical potential or under an external magnetic field at finite temperature. We first consider the quark number susceptibility with the chemical potential. We observe that approaching the critical temperature from high temperature regime, the quark number susceptibility divided by temperature square develops a peak as we increase the chemical potential, which confirms recent lattice QCD results. We discuss this behavior in connection with the existence of the critical end point in the QCD phase diagram. We also consider the quark number susceptibility under the external magnetic field. We predict that the quark number susceptibility exhibits a blow-up behavior at low temperature as we raise the value of the magnetic field. We finally spell out some limitations of our study.Comment: 25 pages, 3 figures, published versio

    Schr\"odinger Holography with and without Hyperscaling Violation

    Full text link
    We study the properties of the Schr\"odinger-type non-relativistic holography for general dynamical exponent z with and without hyperscaling violation exponent \theta. The scalar correlation function has a more general form due to general z as well as the presence of \theta, whose effects also modify the scaling dimension of the scalar operator. We propose a prescription for minimal surfaces of this "codimension 2 holography," and demonstrate the (d-1) dimensional area law for the entanglement entropy from (d+3) dimensional Schr\"odinger backgrounds. Surprisingly, the area law is violated for d+1 < z < d+2, even without hyperscaling violation, which interpolates between the logarithmic violation and extensive volume dependence of entanglement entropy. Similar violations are also found in the presence of the hyperscaling violation. Their dual field theories are expected to have novel phases for the parameter range, including Fermi surface. We also analyze string theory embeddings using non-relativistic branes.Comment: 62 pages and 6 figures, v2: several typos in section 5 corrected, references added, v3: typos corrected, references added, published versio
    • …
    corecore