47 research outputs found

    Correspondence:Space-time asymmetry undermines water yield assessment

    Get PDF

    Practical considerations for enhanced-resolution coil-wrapped Distributed Temperature Sensing

    Get PDF
    Fibre optic distributed temperature sensing (DTS) is widely applied in Earth sciences. Many applications require a spatial resolution higher than that provided by the DTS instrument. Measurements at these higher resolutions can be achieved with a fibre optic cable helically wrapped on a cylinder. The effect of the probe construction, such as its material, shape, and diameter, on the performance has been poorly understood. In this article, we study data sets obtained from a laboratory experiment using different cable and construction diameters, and three field experiments using different construction characteristics. This study shows that the construction material, shape, diameter, and cable attachment method can have a significant influence on DTS temperature measurements. We present a qualitative and quantitative approximation of errors introduced through the choice of auxiliary construction, influence of solar radiation, coil diameter, and cable attachment method. Our results provide insight into factors that influence DTS measurements, and we present a number of solutions to minimize these errors. These practical considerations allow designers of future DTS measurement set-ups to improve their environmental temperature measurements

    A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors

    Get PDF
    Precipitation (P) and potential evaporation (E) are commonly studied drivers of changing freshwater availability, as aridity (E/P) explains ∼90% of the spatial differences in mean runoff across the globe. However, it is unclear if changes in aridity over time are also the most important cause for temporal changes in mean runoff and how this degree of importance varies regionally. We show that previous global assessments that address these questions do not properly account for changes due to precipitation, and thereby strongly underestimate the effects of precipitation on runoff. To resolve this shortcoming, we provide an improved Budyko-based global assessment of the relative and absolute sensitivity of precipitation, potential evaporation, and other factors to changes in mean-annual runoff. The absolute elasticity of runoff to potential evaporation changes is always lower than the elasticity to precipitation changes. The global pattern indicates that for 83% of the land grid cells runoff is most sensitive to precipitation changes, while other factors dominate for the remaining 17%. This dominant role of precipitation contradicts previous global assessments, which considered the impacts of aridity changes as a ratio. We highlight that dryland regions generally display high absolute sensitivities of runoff to changes in precipitation, however within dryland regions the relative sensitivity of runoff to changes in other factors (e.g., changing climatic variability, CO-vegetation feedbacks, and anthropogenic modifications to the landscape) is often far higher. Nonetheless, at the global scale, surface water resources are most sensitive to temporal changes in precipitation

    Practical considerations for enhanced-resolution coil-wrapped Distributed Temperature Sensing

    Get PDF
    Fibre optic distributed temperature sensing (DTS) is widely applied in Earth sciences. Many applications require a spatial resolution higher than that provided by the DTS instrument. Measurements at these higher resolutions can be achieved with a fibre optic cable helically wrapped on a cylinder. The effect of the probe construction, such as its material, shape, and diameter, on the performance has been poorly understood. In this article, we study data sets obtained from a laboratory experiment using different cable and construction diameters, and three field experiments using different construction characteristics. This study shows that the construction material, shape, diameter, and cable attachment method can have a significant influence on DTS temperature measurements. We present a qualitative and quantitative approximation of errors introduced through the choice of auxiliary construction, influence of solar radiation, coil diameter, and cable attachment method. Our results provide insight into factors that influence DTS measurements, and we present a number of solutions to minimize these errors. These practical considerations allow designers of future DTS measurement set-ups to improve their environmental temperature measurements

    Constrained tropical land temperature-precipitation sensitivity reveals decreasing evapotranspiration and faster vegetation greening in CMIP6 3 projections

    Get PDF
    AbstractOver the tropical land surface, accurate estimates of future changes in temperature, precipitation and evapotranspiration are crucial for ecological sustainability, but remain highly uncertain. Here we develop a series of emergent constraints (ECs) by using historical and future outputs from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) Earth System Models under the four basic Shared Socio-economic Pathway scenarios (SSP126, SSP245, SSP370, and SSP585). Results show that the temperature sensitivity to precipitation during 2015–2100, which varies substantially in the original CMIP6 outputs, becomes systematically negative across SSPs after application of the EC, with absolute values between −1.10 °C mm−1 day and −3.52 °C mm−1 day, and with uncertainties reduced by 9.4% to 41.4%. The trend in tropical land-surface evapotranspiration, which was increasing by 0.292 mm yr−1 in the original CMIP6 model outputs, becomes significantly negative (−0.469 mm yr−1) after applying the constraint. Moreover, we find a significant increase of 58.7% in the leaf area index growth rate.</jats:p

    Global Sinusoidal Seasonality in Precipitation Isotopes

    Get PDF
    Quantifying seasonal variations in precipitation δ2H and δ18O is important for many stable isotope applications, including inferring plant water sources and streamflow ages. Our objective is to develop a data product that concisely quantifies the seasonality of stable isotope ratios in precipitation. We fit sine curves defined by amplitude, phase, and offset parameters to quantify annual precipitation isotope cycles at 653 meteorological stations on all seven continents. At most of these stations, including in tropical and subtropical regions, sine curves can represent the seasonal cycles in precipitation isotopes. Additionally, the amplitude, phase, and offset parameters of these sine curves correlate with site climatic and geographic characteristics. Multiple linear regression models based on these site characteristics capture most of the global variation in precipitation isotope amplitudes and offsets; while phase values were not well predicted by regression models globally, they were captured by zonal (0–30∘ and 30–90∘) regressions, which were then used to produce global maps. These global maps of sinusoidal seasonality in precipitation isotopes based on regression models were adjusted for the residual spatial variations that were not captured by the regression models. The resulting mean prediction errors were 0.49 ‰ for δ18O amplitude, 0.73 ‰ for δ18O offset (and 4.0 ‰ and 7.4 ‰ for δ2H amplitude and offset), 8 d for phase values at latitudes outside of 30∘, and 20 d for phase values at latitudes inside of 30∘. We make the gridded global maps of precipitation δ2H and δ18O seasonality publicly available. We also make tabulated site data and fitted sine curve parameters available to support the development of regionally calibrated models, which will often be more accurate than our global model for regionally specific studies

    Recent changes in extreme floods across multiple continents

    Get PDF
    Analyses of trends in observed floods often focus on relatively frequent events, whereas changes in rare floods are only studied for a small number of locations that have exceptionally long observational records. Understanding changes in rare floods is especially relevant as these events are often most damaging and influence the design of major structures. Here, we provide an assessment of changes in the largest flood events (similar to 0.033 annual exceedance probability) observed during the period 1980-2009 for 1744 catchments located in Australia, Brazil, Europe and the United States. The occurrence of rare floods in spatial aggregate shows strong temporal variability and peaked around 1995. During the 30 year period, there are overall increases in both the frequency and magnitude of extreme floods. These increases are strongest in Europe and the United States, and weakest in Brazil and Australia. Physical causes of the reported short-term variability and longer-term changes in extreme floods currently remain elusive, because the key drivers vary between catchments. Nonetheless, this approach provides the basis for a more spatially representative assessment of changes in extreme flood occurrence
    corecore