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Abstract

Analyses of trends in observed floods often focus on relatively frequent events, whereas changes in
rare floods are only studied for a small number of locations that have exceptionally long observational
records. Understanding changes in rare floods is especially relevant as these events are often most
damaging and influence the design of major structures. Here, we provide an assessment of changes in
the largest flood events (~0.033 annual exceedance probability) observed during the period
1980—2009 for 1744 catchments located in Australia, Brazil, Europe and the United States. The
occurrence of rare floods in spatial aggregate shows strong temporal variability and peaked around
1995. During the 30 year period, there are overall increases in both the frequency and magnitude of
extreme floods. These increases are strongest in Europe and the United States, and weakest in Brazil
and Australia. Physical causes of the reported short-term variability and longer-term changes in
extreme floods currently remain elusive, because the key drivers vary between catchments.
Nonetheless, this approach provides the basis for a more spatially representative assessment of

changes in extreme flood occurrence.

1. Introduction

Increasing greenhouse gas concentrations generally
result in a warmer atmosphere able to hold more
moisture at saturation, leading to increasing observed
and predicted rainfall extremes [1-4]. It is therefore
expected that the magnitude and frequency of flooding
will increase with a warming climate [5-7]. How-
ever, the sign, magnitude and spatial manifestation of
regional and global flood changes in both past and
future decades remain largely unknown as there is pro-
found disagreement between predicted flood trends,
which are uncertain but generally increasing [8-12],
and the large variability in observed global flood trends
in recent decades, which can be either increasing or
decreasing [6, 7, 13—16]. This apparent mismatch sug-
gests purely relying on uncertain model predictions
[17], or superimposing extreme precipitation trends

onto floods, is invalidated by several confounding fac-
tors, such as: (i) changes in other climatic factors
that control flood conditions (e.g. evaporation and
snowmelt) [18, 19], (ii) the dependence on antecedent
conditions, which themselves are not always extreme
[20], and (iii) the impact of changing catchment tem-
plates (e.g. river channels and land use) on which
climate-driven changes in flood behavior may occur
[5, 6, 21]. Closely monitoring runoff observations,
which integrates all these factors, is therefore of key
importance to understanding the changing nature of
floods.

Studies of observed trends generally focus on flood
events with some regularity over time (e.g. annual or
bi-annual peaks) [14, 22-25]. Understanding changes
in frequently occurring maximum river flows is useful.
However, this does not necessarily provide information
on extreme and infrequent floods that can be far more

© 2017 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Location of stream gauges and the relative magnitude of the largest flood events. The 1744 stream gauges used in this study
are spread across four continents as indicated by the colored markers. The color indicates the magnitude of the maximum daily flow
rate during the entire 30 year period compared to the mean maximum annual flow rate of the same catchment. This normalized
flood magnitude indicates the relative magnitude of the studied extreme floods compared to the mean of commonly studied annual
flood peaks. In large parts of South America, the more humid parts of the United States, and Scandinavia, the maximum events are
comparable in size with annual flood peaks. In Australia, most of Europe, and the more arid central part of the United States the
1/30 year floods are much bigger than the annual flood peaks.

destructive. Our ability to examine changes in extreme
floods (e.g. annual exceedance probability < 0.05) is
currently confined to locations with exceptionally long
flow records and pre-instrumental flow estimates [26].
Long records are necessary to allow a sufficient number
of extreme events for trend analysis. Consequently, it
is unclear if findings from this small number of rivers,
suchasnoincreasing trends in extreme floods in Europe
[27] or a high sensitivity of flood magnitude to changes
in climate [28, 29], are representative of the majority
of river systems around the world. Thus, the nature of
regional and global changes in extreme floods is mostly
unknown.

If mostly unidirectional changes in the frequency
and magnitude of extreme floods exist (e.g. as predicted
[8—12]), it should be possible to detect such changes
using observational records that, despite having limited
temporal coverage, encompass a much greater spatial
footprint of many rivers across the globe. Although
the changing characteristics of extreme floods for indi-
vidual rivers cannot be determined given the limited
number of extreme events per catchment, aggregating
the data over a large number of locations can pro-
vide robust information on the changing nature of
extremes across larger regions or a large number of
catchments [30]. Such a regional approach is needed
given that a systematic test of recent changes in extreme
floods across multiple continents is currently not avail-
able. Aiming to fill this knowledge gap, we assess
changes in the frequency and magnitude of extreme
tflood events, defined here as the largest observed daily
flow rate during the period 1980-2009 (i.e. ~0.033
annual exceedance probability) for catchments located

in diverse landscapes and climates in Australia, Brazil,
Europe, and the United States.

2. Methods

2.1. Data

Daily streamflow observations for the period 1980—
2009 are used from 309 catchments located in eastern
Australia, 671 catchments in the continental United
States, 244 catchments in Brazil, and 520 catchments
located in Europe (figure 1). The extreme events we
studied (i.e. the maximum flood in a 30 year period)
are orders of magnitude larger than mean flow rates,
and, on average 3.9 times larger than the mean annual
tflood peaks (figure 1). These catchments range in size
from ~1—10 000 km?, and do not have any major dams
affecting river flow, although some catchments in Brazil
may have a higher degree of regulation. More informa-
tion can be found in previous studies that used these
catchments [31-34]. Catchments with more than 15%
missing data are removed from the data set.

2.2. Quantifying changes in floods

For each catchment, we determined the time of occur-
rence of the single largest daily flow rate in the 30 year
period. In order to consider independent extreme
events only (i.e. not consider multiple floods driven by
the same synoptic system), extreme flows from neigh-
boring catchments (gauges less than 100 km apart)
within a 7 day period are counted only once. Modifying
this distance (50-250km) did not change the results
significantly. We then split the data into two periods
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of equal length (#; = 1980—1994, t, = 1995—-2009) and
counted the total number of occurrences (1, n,) of
the maximum flood per period per continent and for
all catchments. The change in flood occurrence is:

An= <”—2—1> - 100%. (1)
m
The probability that floods have increased is calcu-
lated using a chi-square test where the null hypothesis,
H,, is no change in the likelihood of flood occurrences
(i.e. ny=m):

= Z (np — (n) + n2)/2)2- 2)

(ny +my)/2

The likelihood of accepting Hy (indicating the like-
lihood of no increase in maximum flow occurrence) is
calculated as the p-value.

To quantify how flood size changed over time,
we compared per catchment the magnitude of the
maximum daily flow rate of period # (Q;), with
the magnitude of the maximum daily flow rate for
the period £, (Q,):

AQ, = <%—1> - 100% (3)
0,
and its reciprocal form indicating the increase of Q;
compared to Q,:

AQ, = <% - 1) -100%. (4)
0,

A Kolmogorov—Smirnov test rejects at a p=0.05
significance level that the population of all catchments
(and per continent) AQ is normally distributed, sug-
gesting a non-parametric statistical test is needed to

determine whether AQ; and AQ, originate from the
same distribution (which implies no change in flood
magnitude) or from different distributions (which
implies a change in flood magnitude). The two dis-
tributions are compared to one another, because a
single AQ distribution is skewed towards a flood
increase, because it has a (theoretical) lower limit of
zero and a (theoretical) upper limit of infinity. We
therefore used a two-sided Wilcoxon signed rank-test
[35] (which makes no prior assumptions on the shape
of studied distributions) to quantify the likelihood that
the median of AQ; is equivalent to the median of
AQ, to assess whether changes in flood magnitude
are significant.

3. Results and discussion

We display the 5year moving average of overall and
continental extreme flood occurrence rates (figure
2(a)) based on the timing of the largest daily flow
event of each catchment during the 30 years of obser-
vations (figures 2(b)—(e)). Overall, and per continent,
the frequency of extreme floods, i.e. the fraction of
catchments experiencing their maximum flood at a
certain moment, shows considerable temporal vari-
ability. If these extreme floods were fully independent
both spatially and temporally, the expected frequency
would be 0.033 yr~!. Yet, all regions have flood
occurrence rates that differ substantially from this
mean rate (figure 2(a)), indicating extreme flooding
is clustering in time at regional scales. The overall
occurrence rate shows substantial temporal variations,
with a notable peak in extreme flood occurrence rates
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around 1995. Such identification of flood-rich and
flood-poor periods has been used before to understand
the dynamics of flood regimes [e.g. 7, 16, 27, 36—38].
A simple linear trend suggests this multi-continental
rate has also increased over time (figure 2(a)).
This means more catchments have experienced their
most extreme floods more recently. To further test
this apparent non-stationarity in flood occurrences,
we split the data into two periods of equal length
(f; =1980—1994, t, =1995-2009) and calculate the
relative difference in flood occurrences between the two
periods. The total number of occurrences of extreme
floods increased by 26.6% across all catchments
(equation (1), figure 2), where a chi-squared signif-
icance test rejects (p < 0.001) the null-hypothesis of
no change in flood probability (equation (2)). This
indicates that across multiple continents the frequency
of extreme floods has increased, with the caveat that
the significance level and percentages of this increase
will change when other temporal or spatial inter-
vals are used given the strong temporal and regional
variability (figure 2). For example, the relative occur-
rence of maximum floods in the three consecutive
10 year periods between 1980—2009 is 28.9%, 36.6%
and 34.5%, which is consistent with the overall increase
of floods during the 30year period and a peak in
the 1990s.

The relative increases in the occurrence of extreme
floods are strongest in the Northern Hemisphere
regions. In Europe, the flood occurrence rate increased
by 44.4% (p < 0.001), whereby the most recent 15 years
have many more floods than in the period before
1995. Flood occurrences in the United States increased
by 21.4% (p=0.030), but temporal variations are
much stronger, with the flood occurrence rate peaking

around halfway through the 1990s. Flood occurrence
increases are smaller and less significant within the
Southern Hemisphere, with increases of 11.6% in
Australia (p=10.335), and 14.0% in Brazil (p=0.301)
(equations (1) and (2)). Both Australia and Brazil also
have less pronounced increases in flood occurrence
compared to the flood increases in Europe, with a
much larger influence from temporal variability on the
regional pictures of extreme flooding. The regional per-
centages and significance levels of these increases may
also change when data are aggregated into alternative
time intervals.

Given these changes in the frequency of extreme
tfloods, we next ask whether these increases in fre-
quency are also associated with a significant increase
in the magnitudes of extreme events. A comparison of
the maximum daily flow rate of both #; and t, within
each catchment can indicate the percentage increase (or
decrease) of flood magnitudes between the two periods.
Applying equation (3) to all catchments, we find that
the multi-continental aggregated extreme floods (AQ, )
have a median increase of 6.77% in magnitude (figure
3(a)). A two-sided non-parametric Wilcoxon signed
rank-test indicates the median flood increase of AQ, is
significantly larger than the median of AQ; (p < 0.001).
This means that peak flows for the largest floods were
significantly higher in the period 1995—2009 than they
were in the previous 15 years. Again, hemispheric dif-
ferences in these changing extreme flood magnitudes
exist (AQ,, figures 3(b)—(e)); with flood magnitudes
increasing relatively strongly in the United States
(+8.4%, p<0.001) and Europe (+9.9%, p < 0.001),
while increases for the other continents are less strong
or not significant: Australia (+2.4%, p=0.753) and
Brazil (+1.4%, p=0.456).
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While the above analyses do not inform the magni-
tude of change expected within individual catchments,
they do indicate that at continental and multi-
continental scales there is strong temporal variability
as well as increasing trends in both the magnitude
and frequency of extreme flood events. This regional
picture of extreme flooding is important since it is
rarely assessed, because measures of extreme floods
are usually obtained by extrapolating the rating curves
and therefore are likely to contain uncertainties [39].
However, our spatially aggregated approach looks at
relative differences, which reduces the influence of the
observation uncertainty of extreme floods. The extreme
events we studied are orders of magnitude larger than
mean flow rates, and, on average 3.9 times larger than
the mean annual flood peaks. Although these extreme
events will have been implicitly contained within pre-
vious studies that focused on annual flood peaks, or
peaks over threshold analyses, trends in these more fre-
quent flood peaks do not necessarily correspond with
changes in the behavior of extreme floods. For Europe,
our reported increases in extreme flood occurrence
rates and magnitudes are consistent with the observed
increase in the inundated area and news coverage on
rare floods over the past decades [40]. In contrast, there
is no clear overall trend of observed annual flood peaks
across Europe [23]. For the United States, the most
recent decade had lower extreme flood occurrence rates
than midway through the 1990s. Trends in annual flow
peaks are highly variable [13, 14], and only very fre-
quently occurring (i.e. bi-annual) flood peaks in the
Midwest have been identified to show a clear increas-
ing frequency in recent decades [24]. For Australia,
we observe a clear increase in extreme floods from
~2004 onwards (figure 2), although this begins prior
to the end of overall drought conditions around 2009
[41]. Therefore, the smaller increase in extreme flood
events in Australia may be influenced by the lower
likelihood of flood conditions during the prolonged
multiyear drought. Importantly, while extreme floods
for individual river basins have been studied in Brazil
[42—44], our study also provides the first assessment
of extreme flood changes over multiple catchments in
South America. These results therefore highlight the
need for more regional-based assessments of changes
in extreme flooding, since this is the scale at which the
impacts of these changes will be managed and mitigated
against.

Understanding the physical causes behind these
recent changes in extreme floods is a crucial next step
before we can assess the degree to which our findings
are representative of other regions and future condi-
tions [45, 46]. The hydrological time-series we used
is relatively short and catchments (with some excep-
tions, e.g. in Brazil) have minimal human influence.
Consequently, we consider it unlikely that engineer-
ing and land-cover changes are the dominant cause of
the changes in the flood signal. Both climatic variabil-
ity and long-term shifts in climatic conditions can be

W Letters

considered more viable drivers of the observed evolu-
tion in extreme flood occurrence rates and changes in
flood magnitude. Changes in flood magnitudes in indi-
vidual rivers [29, 47], as well as across larger regions
[48, 49] have been linked to climate variability.
Although we cannot yet provide attribution for
the observed recent changes in extreme floods, an
overarching causality is likely to remain elusive as
flood-generating mechanisms vary strongly between
catchments [20], and there are many potential causes
of flood change that will also vary between catchments
and time periods. The difficulty in attributing physical
causes is also compounded by the fact that changing
characteristics of extreme floods for individual rivers
cannot be determined, and the mechanisms generating
more frequently occurring (e.g. annual) flood peaks
are likely to differ from those that generate the most
extreme events. When simulation models are used,
attribution can also be challenging, because of the
substantial uncertainty in model simulations of floods
[6—11, 17], especially the most extreme ones.

4. Conclusions

For the first time, we are able to quantify multi-
continental changes in the frequency and magnitude
of extreme floods. The spatially aggregated approach
does not allow for determining changes at individual
catchments, but the data suggest that in addition to
strong temporal variability there have been increases
during 1980—2009 in both the magnitude and fre-
quency of regional extreme floods. These increases have
been strongest in Europe and the United States, and
weaker in Australia and Brazil. Such flood changes have
significant societal relevance as these extreme events
are often most damaging [50], influence the design of
major structures [46], and shape the riparian environ-
ment [51]. Moreover, impacts at the regional scales
assessed here are more relevant for extreme flood man-
agement and mitigation, but are usually not captured
by traditional flood analysis. The studied catchments
cover many regions, but due to data limitations do not
include some of the most flood-prone regions of the
world (e.g. Southeast Asia [50]), and are not neces-
sarily representative of future conditions. However,
the approach provided here can easily be extended
to these regions as data become available. Future
research focused on understanding the cause of these
changes will allow more reliable predictions of the
future extreme floods, especially for the large areas of
the globe that remain poorly monitored.
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