4,835 research outputs found
Learning Design: reflections on a snapshot of the current landscape
The mounting wealth of open and readily available information and the swift evolution of social, mobile and creative technologies warrant a re-conceptualisation of the role of educators: from providers of knowledge to designers of learning. This need is being addressed by a growing trend of research in Learning Design. Responding to this trend, the Art and Science of Learning Design workshop brought together leading voices in the field and provided a forum for discussing its key issues. It focused on three thematic axes: practices and methods, tools and resources, and theoretical frameworks. This paper reviews some definitions of Learning Design and then summarises the main contributions to the workshop. Drawing upon these, we identify three key challenges for Learning Design that suggest directions for future research
Electric circuit networks equivalent to chaotic quantum billiards
We formulate two types of electric RLC resonance network equivalent to
quantum billiards. In the network of inductors grounded by capacitors squared
resonant frequencies are eigenvalues of the quantum billiard. In the network of
capacitors grounded by inductors squared resonant frequencies are given by
inverse eigen values of the billiard. In both cases local voltages play role of
the wave function of the quantum billiard. However as different from quantum
billiards there is a heat power because of resistance of the inductors. In the
equivalent chaotic billiards we derive the distribution of the heat power which
well describes numerical statistics.Comment: 9 pages, 7 figure
Bridging the gap between nanowires and Josephson junctions: a superconducting device based on controlled fluxon transfer across nanowires
The basis for superconducting electronics can broadly be divided between two
technologies: the Josephson junction and the superconducting nanowire. While
the Josephson junction (JJ) remains the dominant technology due to its high
speed and low power dissipation, recently proposed nanowire devices offer
improvements such as gain, high fanout, and compatibility with CMOS circuits.
Despite these benefits, nanowire-based electronics have largely been limited to
binary operations, with devices switching between the superconducting state and
a high-impedance resistive state dominated by uncontrolled hotspot dynamics.
Unlike the JJ, they cannot increment an output through successive switching,
and their operation speeds are limited by their slow thermal reset times. Thus,
there is a need for an intermediate device with the interfacing capabilities of
a nanowire but a faster, moderated response allowing for modulation of the
output. Here, we present a nanowire device based on controlled fluxon
transport. We show that the device is capable of responding proportionally to
the strength of its input, unlike other nanowire technologies. The device can
be operated to produce a multilevel output with distinguishable states, which
can be tuned by circuit parameters. Agreement between experimental results and
electrothermal circuit simulations demonstrates that the device is classical
and may be readily engineered for applications including use as a multilevel
memory
Non-Simplified SUSY: Stau-Coannihilation at LHC and ILC
If new phenomena beyond the Standard Model will be discovered at the LHC, the
properties of the new particles could be determined with data from the
High-Luminosity LHC and from a future linear collider like the ILC. We discuss
the possible interplay between measurements at the two accelerators in a
concrete example, namely a full SUSY model which features a small stau_1-LSP
mass difference. Various channels have been studied using the Snowmass 2013
combined LHC detector implementation in the Delphes simulation package, as well
as simulations of the ILD detector concept from the Technical Design Report. We
investigate both the LHC and ILC capabilities for discovery, separation and
identification of various parts of the spectrum. While some parts would be
discovered at the LHC, there is substantial room for further discoveries at the
ILC. We finally highlight examples where the precise knowledge about the lower
part of the mass spectrum which could be acquired at the ILC would enable a
more in-depth analysis of the LHC data with respect to the heavier states.Comment: 42 pages, 18 figures, 12 table
Electrothermal feedback in superconducting nanowire single-photon detectors
We investigate the role of electrothermal feedback in the operation of
superconducting nanowire single-photon detectors (SNSPDs). It is found that the
desired mode of operation for SNSPDs is only achieved if this feedback is
unstable, which happens naturally through the slow electrical response
associated with their relatively large kinetic inductance. If this response is
sped up in an effort to increase the device count rate, the electrothermal
feedback becomes stable and results in an effect known as latching, where the
device is locked in a resistive state and can no longer detect photons. We
present a set of experiments which elucidate this effect, and a simple model
which quantitatively explains the results
Effects of accidental microconstriction on the quantized conductance in long wires
We have investigated the conductance of long quantum wires formed in
GaAs/AlGaAs heterostructures. Using realistic fluctuation potentials from donor
layers we have simulated numerically the conductance of four different kinds of
wires. While ideal wires show perfect quantization, potential fluctuations from
random donors may give rise to strong conductance oscillations and degradation
of the quantization plateaux. Statistically there is always the possibility of
having large fluctuations in a sample that may effectively act as a
microconstriction. We therefore introduce microconstrictions in the wires by
occasional clustering of donors. These microconstrictions are found to restore
the quantized plateaux. A similar effect is found for accidental lithographic
inaccuracies.Comment: 4 pages, 2 figures, paper for NANO2002 symposium, will appear in SPIE
proceeding
A revised tropical to subtropical paleogene planktonic foraminiferal zonation
Author Posting. © Cushman Foundation for Foraminiferal Research, 2005. This article is posted here by permission of Cushman Foundation for Foraminiferal Research for personal use, not for redistribution. The definitive version was published in Journal of Foraminiferal Research 35 (2005): 279-298, doi:10.2113/35.4.279.New biostratigraphic investigations on deep sea cores and outcrop sections have revealed several shortcomings in currently used tropical to subtropical Eocene planktonic foraminiferal zonal schemes in the form of: 1) modified taxonomic concepts, 2) modified/different ranges of taxa, and 3) improved calibrations with magnetostratigraphy. This new information provides us with an opportunity to make some necessary improvements to existing Eocene biostratigraphic schemes. At the same time, we provide an alphanumeric notation for Paleogene zones using the prefix ‘P’ (for Paleocene), ‘E’ (for Eocene) and ‘O’ (for Oligocene) to achieve consistency with recent short-hand notation for other Cenozoic zones (Miocene [’M’], Pliocene [PL] and Pleistocene [PT]).
Sixteen Eocene (E) zones are introduced (or nomenclaturally emended) to replace the 13 zones and subzones of Berggren and others (1995). This new zonation serves as a template for the taxonomic and phylogenetic studies in the forthcoming Atlas of Eocene Planktonic Foraminifera (Pearson and others, in press). The 10 zones and subzones of the Paleocene (Berggren and others, 1995) are retained and renamed and/or emended to reflect improved taxonomy and an updated chronologic calibration to the Global Polarity Time Scale (GPTS) (Berggren and others, 2000). The Paleocene/Eocene boundary is correlated with the lowest occurrence (LO) of Acarinina sibaiyaensis (base of Zone E1), at the top of the truncated and redefined (former) Zone P5.
The five-fold zonation of the Oligocene (Berggren and others, 1995) is modified to a six-fold zonation with the elevation of (former) Subzones P21a and P21b to zonal status. The Oligocene (O) zonal components are renamed and/or nomenclaturally emended
- …