236 research outputs found

    Dyslexia and password usage:accessibility in authentication design

    Get PDF
    Governments and businesses are moving online with alacrity, driven by potential cost savings, changing consumer and citizen expectations, and the momentum towards general digital provision. Services are legally required to be inclusive and accessible. Now consider that almost every online service, where people have to identify themselves, requires a password. Passwords seem to be accessible, until one considers specific disabilities, one of which can lead to many challenges: dyslexia being a case in point. Dyslexia is associated with word processing and retention difficulties, and passwords are essentially words, phrases or alphanumeric combinations. We report on a literature review conducted to identify extant research into the impact of dyslexia on password usage, as well as any ameliorations that have been proposed. We discovered a relatively neglected field. We conclude with recommendations for future research into the needs of a large population of dyslexics who seem to struggle with passwords, in a world where avoiding passwords has become almost impossible. The main contribution of this paper is to highlight the difficulties dyslexics face with passwords, and to suggest some avenues for future research in this area

    Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Get PDF
    Background: Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results: Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion: We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution

    The value of postmortem computed tomography as an alternative for autopsy in trauma victims: a systematic review

    Get PDF
    The aim of this study was to assess the role of postmortem computed tomography (PMCT) as an alternative for autopsy in determining the cause of death and the identification of specific injuries in trauma victims. A systematic review was performed by searching the EMBASE and MEDLINE databases. Articles were eligible if they reported both PMCT as well as autopsy findings and included more than one trauma victim. Two reviewers independently assessed the eligibility and quality of the articles. The outcomes were described in terms of the percentage agreement on causes of death and amount of injuries detected. The data extraction and analysis were performed together. Fifteen studies were included describing 244 victims. The median sample size was 13 (range 5–52). The percentage agreement on the cause of death between PMCT and autopsy varied between 46 and 100%. The overall amount of injuries detected on CT ranged from 53 to 100% compared with autopsy. Several studies suggested that PMCT was capable of identifying injuries not detected during normal autopsy. This systematic review provides inconsistent evidence as to whether PMCT is a reliable alternative for autopsy in trauma victims. PMCT has promising features in postmortem examination suggesting PMCT is a good alternative for a refused autopsy or a good adjunct to autopsy because it detects extra injuries overseen during autopsies. To examine the value of PMCT in trauma victims there is a need for well-designed and larger prospective studies

    The Disequilibrium of Nucleosomes Distribution along Chromosomes Plays a Functional and Evolutionarily Role in Regulating Gene Expression

    Get PDF
    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues—cerebrum, testis, and ESCs—and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types

    Transcriptome Analysis of the Model Protozoan, Tetrahymena thermophila, Using Deep RNA Sequencing

    Get PDF
    Background: The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST) database limited the quality of the original genome annotation. Methodology/Principal Findings: This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96 % of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs) and an updated (larger) size estimate of the T. thermophila transcriptome: 57 Mb, or about 55 % of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS) events distributed over 5.2 % of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8 % of the genes originally predicted by the gene finder, to correct coding sequence boundaries an

    A Highly Conserved, Small LTR Retrotransposon that Preferentially Targets Genes in Grass Genomes

    Get PDF
    LTR retrotransposons are often the most abundant components of plant genomes and can impact gene and genome evolution. Most reported LTR retrotransposons are large elements (>4 kb) and are most often found in heterochromatic (gene poor) regions. We report the smallest LTR retrotransposon found to date, only 292 bp. The element is found in rice, maize, sorghum and other grass genomes, which indicates that it was present in the ancestor of grass species, at least 50–80 MYA. Estimated insertion times, comparisons between sequenced rice lines, and mRNA data indicate that this element may still be active in some genomes. Unlike other LTR retrotransposons, the small LTR retrotransposons (SMARTs) are distributed throughout the genomes and are often located within or near genes with insertion patterns similar to MITEs (miniature inverted repeat transposable elements). Our data suggests that insertions of SMARTs into or near genes can, in a few instances, alter both gene structures and gene expression. Further evidence for a role in regulating gene expression, SMART-specific small RNAs (sRNAs) were identified that may be involved in gene regulation. Thus, SMARTs may have played an important role in genome evolution and genic innovation and may provide a valuable tool for gene tagging systems in grass

    Gene and genon concept: coding versus regulation: A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology

    Get PDF
    We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon

    At Least Ten Genes Define the Imprinted Dlk1-Dio3 Cluster on Mouse Chromosome 12qF1

    Get PDF
    Background: Genomic imprinting is an exception to Mendelian genetics in that imprinted genes are expressed monoallelically, dependent on parental origin. In mammals, imprinted genes are critical in numerous developmental and physiological processes. Aberrant imprinted gene expression is implicated in several diseases including Prader-Willi/ Angelman syndromes and cancer. Methodology/Principal Findings: To identify novel imprinted genes, transcription profiling was performed on two uniparentally derived cell lines, androgenetic and parthenogenetic primary mouse embryonic fibroblasts. A maternally expressed transcript termed Imprinted RNA near Meg3/Gtl2 (Irm) was identified and its expression studied by Northern blotting and whole mounts in situ hybridization. The imprinted region that contains Irm has a parent of origin effect in three mammalian species, including the sheep callipyge locus. In mice and humans, both maternal and paternal uniparental disomies (UPD) cause embryonic growth and musculoskeletal abnormalities, indicating that both alleles likely express essential genes. To catalog all imprinted genes in this chromosomal region, twenty-five mouse mRNAs in a 1.96Mb span were investigated for allele specific expression. Conclusions/Significance: Ten imprinted genes were elucidated. The imprinting of three paternally expressed protein coding genes (Dlk1, Peg11, and Dio3) was confirmed. Seven noncoding RNAs (Meg3/Gtl2, Anti-Peg11, Meg8, Irm/‘‘Rian’’

    Intron Evolution: Testing Hypotheses of Intron Evolution Using the Phylogenomics of Tetraspanins

    Get PDF
    BACKGROUND: Although large scale informatics studies on introns can be useful in making broad inferences concerning patterns of intron gain and loss, more specific questions about intron evolution at a finer scale can be addressed using a gene family where structure and function are well known. Genome wide surveys of tetraspanins from a broad array of organisms with fully sequenced genomes are an excellent means to understand specifics of intron evolution. Our approach incorporated several new fully sequenced genomes that cover the major lineages of the animal kingdom as well as plants, protists and fungi. The analysis of exon/intron gene structure in such an evolutionary broad set of genomes allowed us to identify ancestral intron structure in tetraspanins throughout the eukaryotic tree of life. METHODOLOGY/PRINCIPAL FINDINGS: We performed a phylogenomic analysis of the intron/exon structure of the tetraspanin protein family. In addition, to the already characterized tetraspanin introns numbered 1 through 6 found in animals, three additional ancient, phase 0 introns we call 4a, 4b and 4c were found. These three novel introns in combination with the ancestral introns 1 to 6, define three basic tetraspanin gene structures which have been conserved throughout the animal kingdom. Our phylogenomic approach also allows the estimation of the time at which the introns of the 33 human tetraspanin paralogs appeared, which in many cases coincides with the concomitant acquisition of new introns. On the other hand, we observed that new introns (introns other than 1-6, 4a, b and c) were not randomly inserted into the tetraspanin gene structure. The region of tetraspanin genes corresponding to the small extracellular loop (SEL) accounts for only 10.5% of the total sequence length but had 46% of the new animal intron insertions. CONCLUSIONS/SIGNIFICANCE: Our results indicate that tests of intron evolution are strengthened by the phylogenomic approach with specific gene families like tetraspanins. These tests add to our understanding of genomic innovation coupled to major evolutionary divergence events, functional constraints and the timing of the appearance of evolutionary novelty

    Alternative splicing: the pledge, the turn, and the prestige

    Get PDF
    corecore