29 research outputs found

    Thermal, electric and spin transport in superconductor/ferromagnetic-insulator structures

    Full text link
    A ferromagnetic insulator (FI) attached to a conventional superconductor (S) changes drastically the properties of the latter. Specifically, the exchange field at the FI/S interface leads to a splitting of the superconducting density of states. If S is a superconducting film, thinner than the superconducting coherence length, the modification of the density of states occurs over the whole sample. The co-existence of the exchange splitting and superconducting correlations in S/FI structures leads to striking transport phenomena that are of interest for applications in thermoelectricity, superconducting spintronics and radiation sensors. Here we review the most recent progress in understanding the transport properties of FI/S structures by presenting a complete theoretical framework based on the quasiclassical kinetic equations. We discuss the coupling between the electronic degrees of freedom, charge, spin and energy, under non-equilibrium conditions and its manifestation in thermoelectricity and spin-dependent transport.Comment: 117 pages, 33 figures. arXiv admin note: substantial text overlap with arXiv:1706.0824

    Spin-polarized Josephson and quasiparticle currents in superconducting spin-filter tunnel junctions

    Get PDF
    We present a theoretical study of the effect of spin-filtering on the Josephson and dissipative quasiparticle currents in a superconducting tunnel junction. By combining the quasiclassical Green's functions and the tunneling Hamiltonian method we describe the transport properties of a generic junction consisting of two superconducting leads with an effective exchange field h separated by a spin-filter insulating barrier. We show that besides the tunneling of Cooper pairs with total spin-projection Sz = 0 there is another contribution to the Josephson current due to equal-spin Cooper pairs. The latter is finite and not affected by the spin-filter effect provided that the fields h and the magnetization of the barrier are non-collinear . We also determine the quasiparticle current for a symmetric junction and show that the differential conductance may exhibit peaks at different values of the voltage depending on the polarization of the spin-filter, and the relative angle between the exchange fields and the magnetization of the barrier. Our findings provide a plausible explanation for existing experiments on Josephson junctions with magnetic barriers, predict new effects and show how spin-polarized supercurrents in hybrid structures can be created.Comment: 5 pages; 3 figure

    Superconductivity Induced Ferromagnetism In The Presence of Spin-Orbit Coupling

    Full text link
    We investigate the behavior of magnetic impurities placed on the surface of superconductor thin films with spin-orbit coupling. Our study reveals long-range interactions between the impurities, which decay according to a power law, mediated by the supercurrents. Importantly, these interactions possess a ferromagnetic component when considering the influence of the electromagnetic field, leading to the parallel alignment of the magnetic moments in the case of two impurities. In a Bravais lattice of magnetic impurities, superconductivity facilitates the establishment of ferromagnetic order within specific parameter ranges. These findings challenge the conventional understanding that ferromagnetism and superconductivity are mutually exclusive phenomena. Our theoretical framework provides a plausible explanation for the recently observed remanent flux in iron-based superconductors, particularly Fe(Se,Te).Comment: 5 pages, 3 figures + supplmentary material (5 pages

    Theory of a Single Magnetic Impurity on a Thin Metal Film in Proximity to a Superconductor

    Full text link
    We argue that the formation of Yu-Shiba-Rusinov excitations in proximitized thin films is largely mediated by a type of Andreev-bound state named after de Gennes and Saint James. This is shown by studying an experimentally motivated model and computing the overlap of the wave functions of these two subgap states. We find the overlap stays close to unity even as the system moves away from weak coupling across the parity-changing quantum phase transition. Based on this observation, we introduce a single-site model of the bound state coupled to a quantum spin. The adequacy of this description is assessed by reintroducing the coupling to the continuum as a weak perturbation and studying its scaling flow using Anderson's poor man's scaling.Comment: 12 pages, 3 figure

    Modulation of pure spin currents with a ferromagnetic insulator

    Get PDF
    We propose and demonstrate spin manipulation by magnetically controlled modulation of pure spin currents in cobalt/copper lateral spin valves, fabricated on top of the magnetic insulator Y3_3Fe5_5O12_{12} (YIG). The direction of the YIG magnetization can be controlled by a small magnetic field. We observe a clear modulation of the non-local resistance as a function of the orientation of the YIG magnetization with respect to the polarization of the spin current. Such a modulation can only be explained by assuming a finite spin-mixing conductance at the Cu/YIG interface, as it follows from the solution of the spin-diffusion equation. These results open a new path towards the development of spin logics.Comment: 5 pages and 4 figures + supplemental material (10 pages, 7 figures
    corecore