1,297 research outputs found

    Covering problems in edge- and node-weighted graphs

    Full text link
    This paper discusses the graph covering problem in which a set of edges in an edge- and node-weighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.Comment: To appear in SWAT 201

    A Compact Gas Cerenkov Detector with Novel Optics

    Get PDF
    We discuss the design and performance of a threshold Cerenkov counter for identification of charged hadrons. The radiator is pressurized gas, which is contained in thin-walled cylindrical modules. A mirror system of novel design transports Cerenkov photons to photomultiplier tubes. This system is compact, contains relatively little material, and has a large fraction of active volume. A prototype of a module designed for the proposed CLEO III detector has been studied using cosmic rays. Results from these studies show good agreement with a detailed Monte Carlo simulation of the module and indicate that it should achieve separation of pions and kaons at the 2.5-3.0sigma level in the momentum range 0.8-2.8 GeV/c. We predict performance for specific physics analyses using a GEANT-based simulation package.Comment: Submitted to NIM. 23 pages, 11 postscript figures. Postscript file is also available at http://w4.lns.cornell.edu/public/CLNS/199

    Extraction of the pion distribution amplitude from polarized muon pair production

    Get PDF
    We consider the production of muon pairs from the scattering of pions on longitudinally polarized protons. We calculate the cross section and the single spin asymmetry for this process, taking into account pion bound state effects. We work in the kinematic region where the photon has a large longitudinal momentum fraction, which allows us to treat the bound state problem perturbatively. Our predictions are directly proportional to the pion distribution amplitude. A measurement of the polarized Drell-Yan cross section thus allows the determination of the shape of the pion distribution amplitude.Comment: 13 pages, using revtex, two figures added separately as one uuencoded Z-compressed fil

    CCN1 mutation is associated with atrial septal defect

    Get PDF
    The genetic basis of congenital heart disease remains unknown in most of the cases. Recently, a novel mouse model shed new light on the role of CCN1/CYR61, a matricellular regulatory factor, in cardiac morphogenesis. In a candidate gene approach, we analyzed a cohort of 143 patients with atrial septal defects (ASD) by sequencing the coding exons of CCN1. In addition to three frequent polymorphisms, we identified an extremely rare novel heterozygous missense mutation (c.139C > T; p.R47W) in one patient with severe ASD. The mutation leads to an exchange of residues with quite different properties in a highly conserved position of the N-terminal insulin-like growth factor binding protein module. Further bioinformatic analysis, exclusion of known ASD disease genes as well as the exclusion of the mutation in a very high number of ethnically matched controls (more than 1,000 individuals) and in public genetic databases, indicates that the p.R47W variant is a probable disease-associated mutation. The report about ASD in mice in heterozygous Ccn 1 +/- animals strongly supports this notion. Our study is the first to suggest a relationship between a probable CCN1 mutation and ASD. Our purpose here was to draw attention to CCN1, a gene that we believe may be important for genetic analysis in patients with congenital heart disease

    Enhanced Quantum Estimation via Purification

    Full text link
    We analyze the estimation of a finite ensemble of quantum bits which have been sent through a depolarizing channel. Instead of using the depolarized qubits directly, we first apply a purification step and show that this improves the fidelity of subsequent quantum estimation. Even though we lose some qubits of our finite ensemble the information is concentrated in the remaining purified ones.Comment: 6 pages, including 3 figure

    A mechanism for the T-odd pion fragmentation function

    Full text link
    We consider a simple rescattering mechanism to calculate a leading twist TT-odd pion fragmentation function, a favored candidate for filtering the transversity properties of the nucleon. We evaluate the single spin azimuthal asymmetry for a transversely polarized target in semi-inclusive deep inelastic scattering (for HERMES kinematics). Additionally, we calculate the double TT-odd cos⁥2ϕ\cos2\phi asymmetry in this framework.Comment: 6 pages revtex, 7 eps figures, references added and updated in this published versio

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∌1 m and ∌1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≄500 ÎŒm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 ÎŒm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Perspectives on metaphyseal conservative stems

    Get PDF
    Total hip replacement is showing, during the last decades, a progressive evolution toward principles of reduced bone and soft tissue aggression. These principles have become the basis of a new philosophy, tissue sparing surgery. Regarding hip implants, new conservative components have been proposed and developed as an alternative to conventional stems. Technical and biomechanical characteristics of metaphyseal bone-stock-preserving stems are analyzed on the basis of the available literature and our personal experience. Mayo, Nanos and Metha stems represent, under certain aspects, a design evolution starting from shared concepts: reduced femoral violation, non-anatomic geometry, proximal calcar loading and lateral alignment. However, consistent differences are level of neck preservation, cross-sectional geometry and surface finishing. The Mayo component is the most time-tested component and, in our hands, it showed an excellent survivorship at the mid-term follow-up, with an extremely reduced incidence of aseptic loosening (partially reduced by the association with last generation acetabular couplings). For 160 implants followed for a mean of 4.7 years, survivorship was 97.5% with 4 failed implants: one fracture with unstable stem, 1 septic loosening and 2 aseptic mobilizations. DEXA analysis, performed on 15 cases, showed a good calcar loading and stimulation, but there was significant lateral load transfer to R3–R4 zones, giving to the distal part of the stem a function not simply limited to alignment. Metaphyseal conservative stems demonstrated a wide applicability with an essential surgical technique. Moreover, they offer the options of a “conservative revision” with a conventional primary component in case of failure and a “conservative revision” for failed resurfacing implants
    • 

    corecore