2,392 research outputs found

    Coulomb exchange and pairing contributions in nuclear Hartree-Fock-Bogoliubov calculations with the Gogny force

    Get PDF
    We present exact Hartree-Fock-Bogoliubov calculations with the finite range density dependent Gogny force using a triaxial basis. For the first time, all contributions to the Pairing and Fock Fields arising from the Gogny and Coulomb interactions as well as the two-body correction of the kinetic energy have been calculated in this basis. We analyze the relevance of these terms in different regions of the periodic table at zero and high angular momentum. The validity of commonly used approximations that neglect different terms in the variational equations is also checked. We find a decrease of the proton pairing energies mainly due to a Coulomb antipairing effect.Comment: 32 pages, 12 figures. In press in Nucl. Physics

    Thermal shape fluctuation effects in the description of hot nuclei

    Full text link
    The behavior of several nuclear properties with temperature is analyzed within the framework of the Finite Temperature Hartree-Fock-Bogoliubov (FTHFB) theory with the Gogny force and large configuration spaces. Thermal shape fluctuations in the quadrupole degree of freedom, around the mean field solution, are taken into account with the Landau prescription. As representative examples the nuclei 164^{164}Er, 152^{152}Dy and 192^{192}Hg are studied. Numerical results for the superfluid to normal and deformed to spherical shape transitions are presented. We found a substantial effect of the fluctuations on the average value of several observables. In particular, we get a decrease in the critical temperature (TcT_c) for the shape transition as compared with the plain FTHFB prediction as well as a washing out of the shape transition signatures. The new values of TcT_c are closer to the ones found in Strutinsky calculations and with the Pairing Plus Quadrupole model Hamiltonian.Comment: 17 pages, 8 Figure

    Approximate particle number projection with density dependent forces: Superdeformed bands in the A=150 and A=190 regions

    Get PDF
    We derive the equations for approximate particle number projection based on mean field wave functions with finite range density dependent forces. As an application ground bands of even-A superdeformed nuclei in the A=150 and A=190 regions are calculated with the Gogny force. We discuss nuclear properties such as quadrupole moments, moments of inertia and quasiparticle spectra, among others, as a function of the angular momentum. We obtain a good overall description.Comment: 31 pages, 10 figures, 3 appendices. In press in Nucl. Phy

    Approximate particle number projection for finite range density dependent forces

    Get PDF
    The Lipkin-Nogami method is generalized to deal with finite range density dependent forces. New expressions are derived and realistic calculations with the Gogny force are performed for the nuclei 164^{164}Er and 168^{168}Er. The sharp phase transition predicted by the mean field approximation is washed out by the Lipkin-Nogami approach; a much better agreement with the experimental data is reached with the new approach than with the Hartree-Fock_Bogoliubov one, specially at high spins.Comment: 5 pages, RevTeX 3.0, 3 postscript figures included using uufiles. Submitted to Phys. Rev. Let
    • …
    corecore