2,392 research outputs found
Coulomb exchange and pairing contributions in nuclear Hartree-Fock-Bogoliubov calculations with the Gogny force
We present exact Hartree-Fock-Bogoliubov calculations with the finite range
density dependent Gogny force using a triaxial basis. For the first time, all
contributions to the Pairing and Fock Fields arising from the Gogny and Coulomb
interactions as well as the two-body correction of the kinetic energy have been
calculated in this basis. We analyze the relevance of these terms in different
regions of the periodic table at zero and high angular momentum. The validity
of commonly used approximations that neglect different terms in the variational
equations is also checked. We find a decrease of the proton pairing energies
mainly due to a Coulomb antipairing effect.Comment: 32 pages, 12 figures. In press in Nucl. Physics
Thermal shape fluctuation effects in the description of hot nuclei
The behavior of several nuclear properties with temperature is analyzed
within the framework of the Finite Temperature Hartree-Fock-Bogoliubov (FTHFB)
theory with the Gogny force and large configuration spaces. Thermal shape
fluctuations in the quadrupole degree of freedom, around the mean field
solution, are taken into account with the Landau prescription. As
representative examples the nuclei Er, Dy and Hg are
studied. Numerical results for the superfluid to normal and deformed to
spherical shape transitions are presented. We found a substantial effect of the
fluctuations on the average value of several observables. In particular, we get
a decrease in the critical temperature () for the shape transition as
compared with the plain FTHFB prediction as well as a washing out of the shape
transition signatures. The new values of are closer to the ones found in
Strutinsky calculations and with the Pairing Plus Quadrupole model Hamiltonian.Comment: 17 pages, 8 Figure
Approximate particle number projection with density dependent forces: Superdeformed bands in the A=150 and A=190 regions
We derive the equations for approximate particle number projection based on
mean field wave functions with finite range density dependent forces. As an
application ground bands of even-A superdeformed nuclei in the A=150 and A=190
regions are calculated with the Gogny force.
We discuss nuclear properties such as quadrupole moments, moments of inertia
and quasiparticle spectra, among others, as a function of the angular momentum.
We obtain a good overall description.Comment: 31 pages, 10 figures, 3 appendices. In press in Nucl. Phy
Approximate particle number projection for finite range density dependent forces
The Lipkin-Nogami method is generalized to deal with finite range density
dependent forces. New expressions are derived and realistic calculations with
the Gogny force are performed for the nuclei Er and Er. The
sharp phase transition predicted by the mean field approximation is washed out
by the Lipkin-Nogami approach; a much better agreement with the experimental
data is reached with the new approach than with the Hartree-Fock_Bogoliubov
one, specially at high spins.Comment: 5 pages, RevTeX 3.0, 3 postscript figures included using uufiles.
Submitted to Phys. Rev. Let
- …