96 research outputs found

    Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Get PDF
    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine

    Transmission Electron Microscopy of Plagioclase-Rich Itokawa Grains: Space Weathering Effects and Solar Flare Track Exposure Ages

    Get PDF
    Limited samples are available for the study of space weathering effects on airless bodies. The grains returned by the Hayabusa mission to asteroid 25143 Itokawa provide the only samples currently available to study space weathering of ordinary chondrite regolith. We have previously studied olivine-rich Itokawa grains and documented their surface alteration and exposure ages based on the observed density of solar flare particle tracks. Here we focus on the rarer Itokawa plagioclase grains, in order to allow comparisons between Itokawa and lunar soil plagioclase grains for which an extensive data set exists

    Constraints on Exposure Ages of Lunar and Asteroidal Regolith Particles

    Get PDF
    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Exposure to the solar wind results in implantation effects that are preserved in the rims of grains (typically the outermost 100 nm), while impact processes result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. These processes are collectively referred to as space weathering. A critical element in the study of these processes is to determine the rate at which these effects accumulate in the grains during their space exposure. For small particulate samples, one can use the density of solar flare particle tracks to infer the length of time the particle was at the regolith surface (i.e., its exposure age). We have developed a new technique that enables more accurate determination of solar flare particle track densities in mineral grains <50 micron in size that utilizes focused ion beam (FIB) sample preparation combined with transmission electron microscopy (TEM) imaging. We have applied this technique to lunar soil grains from the Apollo 16 site (soil 64501) and most recently to samples from asteroid 25143 Itokawa returned by the Hayabusa mission. Our preliminary results show that the Hayabusa grains have shorter exposure ages compared to typical lunar soil grains. We will use these techniques to re-examine the track density-exposure age calibration from lunar samples reported by Blanford et al. (1975)

    Insights into Regolith Evolution from TEM Studies of Space Weathering of Itokawa Particles

    Get PDF
    Exposure to solar wind irradiation and micrometeorite impacts alter the properties of regolith materials exposed on airless bodies. However, estimates of space weathering rates for asteroid regoliths span many orders of magnitude. Timescales for space weathering processes on airless bodies can be anchored by analyzing surface samples returned by JAXA's Hayabusa mission to asteroid 25143 Itokawa. Constraints on timescales of solar flare particle track accumulation and formation of solar wind produced ion-damaged rims yield information on regolith dynamics

    A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    Get PDF
    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) technique

    A Novel Hybrid Ultramicrotomy/FIB-SEM Technique: Preparation of Serial Electron-Transparent Thin Sections of a Hayabusa Grain

    Get PDF
    The Japanese space agency's (JAXA) Hayabusa mission returned the first particulate samples (typically <100micron) from the surface of an asteroid (25143 Itokawa). These precious samples provide important insights into early Solar System processes, but their sizes pose tremendous challenges to coordinated analysis using a variety of nano- and micro-beam techniques. The ability to glean maximal information from individual particles has become increasingly important and depends critically on sample preparation. We developed a hybrid technique combining traditional ultramicrotomy with focused ion beam (FIB) techniques, allowing for more thorough in situ investigations of grain surfaces and interiors. Using this method, we increase the number of FIB-prepared sections that can be recovered from a particle with dimensions on the order of tens of microns. These sections can be subsequently analyzed using a variety of analytical techniques. Particle RA-QD02-0211 is a approx. 404020 micron particle from Itokawa containing olivine and Fe sulfides. It was embedded in low viscosity epoxy and partly sectioned to a depth of approx 10 micron; sections are placed on Cu grids with thin amorphous films for transmission electron microscope (TEM) analyses. With the sample surface partly exposed, the epoxy bullet is trimmed to a height of approx. 5mm to accommodate the allowable dimensions for FIB work (FEI Quanta 600 3D dual beam FIB-SEM). Using a diamond trim knife, the epoxy surrounding the grain is removed on 3 sides (to within a few microns of the grain); the depth of material removed extends well below the bottom of the particle. The sample is attached to an SEM pin mount, the epoxy coated with conductive paint, and the entire assembly coated with approx. 40nm of carbon to eliminate sample charging during FIB work. A protective carbon cap is placed according to the plan for the 15 FIB sections. The central 'spine' of the cap runs perpendicular to the front of the sample, and the 'ribs' protruding from either side run parallel. Each rib indicates the location of a planned FIB section, and the spine contains the final two planned sections. We use a cap with a 4 micron-wide spine and 2micron-wide ribs that have 3.5 micron of space between them (narrower cuts result in too much re-deposition of material inside the trenches). Using a 30kV, 3nA ion-beam we expose the front surface of the grain and commence milling trenches between sections. Rather than using the typical C-cut to prepare the sample for lift-out, an L-cut is used instead, leaving the sample connected by an interior tab. tab. Sections are lifted out, attached to TEM grids and thinned to electron transparency. TEM analyses show that our hybrid technique preserves both interior and edge features, including surface modifications from exposure to the space environment, such as damaged rims that form in response to solar wind implantation effects and adhering grains. In addition, the FIB sections provide larger areas that are free of fractures and chatter effects in comparison to the microtome thin sections, thus enabling more accurate measurements of solar flare particle track densities that are used to determine the surface exposure age of the particles

    Space Weathering of Itokawa Particles: Implications for Regolith Evolution

    Get PDF
    Space weathering processes such as solar wind irradiation and micrometeorite impacts are known to alter the the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies. Here, we use the effects of solar wind irradiation and the accumulation of solar flare tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics on these timescales

    TEM Analyses of Itokawa Regolith Grains and Lunar Soil Grains to Directly Determine Space Weathering Rates on Airless Bodies

    Get PDF
    Samples returned from the moon and Asteroid Itokawa by NASA's Apollo Missions and JAXA's Hayabusa Mission, respectively, provide a unique record of their interaction with the space environment. Space weathering effects result from micrometeorite impact activity and interactions with the solar wind. While the effects of solar wind interactions, ion implantation and solar flare particle track accumulation, have been studied extensively, the rate at which these effects accumulate in samples on airless bodies has not been conclusively determined. Results of numerical modeling and experimental simulations do not converge with observations from natural samples. We measured track densities and rim thicknesses of three olivine grains from Itokawa and multiple olivine and anorthite grains from lunar soils of varying exposure ages. Samples were prepared for analysis using a Leica EM UC6 ultramicrotome and an FEI Quanta 3D dual beam focused ion beam scanning electron microscope (FIB-SEM). Transmission electron microscope (TEM) analyses were performed on the JEOL 2500SE 200kV field emission STEM. The solar wind damaged rims on lunar anorthite grains are amorphous, lack inclusions, and are compositionally similar to the host grain. The rim width increases as a smooth function of exposure age until it levels off at approximately 180 nm after approximately 20 My (Fig. 1). While solar wind ion damage can only accumulate while the grain is in a direct line of sight to the Sun, solar flare particles can penetrate to mm-depths. To assess whether the track density accurately predicts surface exposure, we measured the rim width and track density in olivine and anorthite from the surface of rock 64455, which was never buried and has a surface exposure age of 2 My based on isotopic measurements. The rim width from 64455 (60-70nm) plots within error of the well-defined trend for solar wind amorphized rims in Fig. 1. Measured solar flare track densities are accurately reflecting the surface exposure of the grains. Track densities correlate with the amorphous rim thicknesses. While the space-weathered rims of anorthite grains are amorphous, the space-weathered rims on both Itokawa and lunar olivine grains show solar wind damaged rims that are not amorphous. Instead, the rims are nanocrystalline with high dislocation densities and sparse inclusions of nanophase Fe metal. The rim thicknesses on the olivine grains also correlate with track density. The Itokawa olivine grains have track densities that indicate surface exposures of approximately 10(exp 5) years. Longer exposures (up to approximately 10(exp 7) years) do not amorphize the rims, as evidenced by lunar soil olivines with high track densities (approximately 10(exp 11) cm(exp -2)). From the combined data, shown in Fig. 1, it is clear that olivine is damaged (but not amorphized) more rapidly by the solar wind compared to anorthite. The olivine damaged rim forms quickly (in approximately 10(exp 6) y) and saturates at approximately 120nm with longer exposure time. The anorthite damaged rims form more slowly, amorphize, and grow thicker than the olivine rims. This is in agreement with numerical modeling data which predicts that solar wind damaged rims on anorthite will be thicker than olivine. However, the models predict that both olivine and anorthite rims will amorphize and reach equilibrium widths in less than 10(exp 3) y, in contrast to what is observed for natural samples. Laboratory irradiation experiments, which show rapid formation of fully amorphous and blistered surfaces from simulated solar wind exposures are also in contrast to observations of natural samples. These results suggest that there is a flux dependence on the type and extent of irradiation damage that develops in olivine. This flux dependence suggests that great caution be used in extrapolating between high-flux laboratory experiments and the natural case, as demonstrated by. We constrain the space weathering rate through analysis of returned samples. Provided that the track densities and the solar wind damaged rim widths exhibited by the Itokawa grains are typical of the fine-grained regions of Itokawa, then the space weathering rate is on the order of 10(exp 5) y. Space weathering effects in lunar soils saturate within a few My of exposure while those in Itokawa regolith grains formed in approximately 10(exp 5) y. Olivine and anorthite respond differently to solar wind irradiation. The space weathering effects in olivine are particularly difficult to reconcile with laboratory irradiation studies and numerical models. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind amorphization of different minerals on airless bodies

    FIB-TEM Investigations of Fe-NI-Sulfides in the CI Chondrites Alais and Orgueil

    Get PDF
    The CI chondrites are primitive meteorites with bulk compositions matching the solar photosphere for all but the lightest elements. They have been extensively aqueously altered, and are composed primarily of fine-grained phyllosilicate matrix material which is host to carbonates, sulfates, sulfides, and minor amounts of olivine and pyroxene. The alteration, while extensive, is heterogeneous. For example, CI-chondrite cubanite and carbonate grains differ on mm to sub-mm scales, demonstrating multiple aqueous episodes. CI-chondrite variability is also evidenced by degree of brecciation, abundance and size of coarse-grained phyllosilicates, olivine and pyroxene abundance, as well as Ni-content and size of sulfide grains. Our previous work revealed Orgueil sulfide grains with variable Ni-contents, metal:S ratios, crystal structures and textures. We continue to explore the variability of CI-chondrite pyrrhotite (Po, (FeNi)1-xS) and pentlandite (Pn, (Fe,Ni)9S8) grains. We investigate the microstructure of sulfides within and among CI-chondrite meteorites in order to place constraints on the conditions under which they formed

    Correlating Mineralogy and Amino Acid Contents of Milligram-Scale Murchison Carbonaceous Chondrite Samples

    Get PDF
    Amino acids, the building blocks of proteins, have been found to be indigenous in most of the carbonaceous chondrite groups. The abundances of amino acids, as well as their structural, enantiomeric and isotopic compositions differ significantly among meteorites of different groups and petrologic types. This suggests that there is a link between parent-body conditions, mineralogy and the synthesis and preservation of amino acids (and likely other organic molecules). However, elucidating specific causes for the observed differences in amino acid composition has proven extremely challenging because samples analyzed for amino acids are typically much larger ((is) approximately 100 mg powders) than the scale at which meteorite heterogeneity is observed (sub mm-scale differences, (is) approximately 1-mg or smaller samples). Thus, the effects of differences in mineralogy on amino acid abundances could not be easily discerned. Recent advances in the sensitivity of instrumentation have made possible the analysis of smaller samples for amino acids, enabling a new approach to investigate the link between mineralogical con-text and amino acid compositions/abundances in meteorites. Through coordinated mineral separation, mineral characterization and highly sensitive amino acid analyses, we have performed preliminary investigations into the relationship between meteorite mineralogy and amino acid composition. By linking amino acid data to mineralogy, we have started to identify amino acid-bearing mineral phases in different carbonaceous meteorites. The methodology and results of analyses performed on the Murchison meteorite are presented here
    • …
    corecore