34,694 research outputs found

    Global integration in the banking industry

    Get PDF
    Lowered regulatory barriers and advances in technology have reduced the cost of supplying banking services across borders. At the same time, growth in activity by multinational corporations has increased the demand for international financial services. As a result, many observers believe that global integration is under way in the banking industry, that banks are expanding their reach across borders, and that many banking markets will therefore develop large foreign components. The authors report on a study conducted by them, along with Qinglei Dai and Steven Ongena, that examined the nationality and international reach of banks that provide short-term financial services across Europe to affiliates of multinational corporations. The present article also looks at time-series data that provide a more recent look at the progress of integration in Europe. Based on a 1996 survey of more than 2,000 affiliates, the study found that an affiliate is most likely to choose a bank headquartered in the nation in which it is operating (a host-nation bank) rather than a bank headquartered in the home country of the affiliate or in a third nation. The affiliate is also more likely to select a bank limited to local or regional operations rather than one with global reach. The findings are consistent with the proposition that affiliates most value a bank that understands the culture, business practices, and regulatory conditions of the country in which the affiliate operates, and that host-nation banks possess a competitive advantage over other banks in this regard. The time-series data--on syndicated loans, foreign bank claims, and the dispersion of consumer goods prices across Europe--are also consistent with the picture drawn from the 1996 survey. The article concludes that banking markets evidently need not become more integrated even as economic activity otherwise becomes increasingly global.Banks and banking ; International finance

    Description of nuclear systems with a self-consistent configuration-mixing approach. I: Theory, algorithm, and application to the 12^{12}C test nucleus

    Full text link
    Although self-consistent multi-configuration methods have been used for decades to address the description of atomic and molecular many-body systems, only a few trials have been made in the context of nuclear structure. This work aims at the development of such an approach to describe in a unified way various types of correlations in nuclei, in a self-consistent manner where the mean-field is improved as correlations are introduced. The goal is to reconcile the usually set apart Shell-Model and Self-Consistent Mean-Field methods. This approach is referred as "variational multiparticle-multihole configuration mixing method". It is based on a double variational principle which yields a set of two coupled equations that determine at the same time the expansion coefficients of the many-body wave function and the single particle states. The formalism is derived and discussed in a general context, starting from a three-body Hamiltonian. Links to existing many-body techniques such as the formalism of Green's functions are established. First applications are done using the two-body D1S Gogny effective force. The numerical procedure is tested on the 12^{12}C nucleus in order to study the convergence features of the algorithm in different contexts. Ground state properties as well as single-particle quantities are analyzed, and the description of the first 2+2^+ state is examined. This study allows to validate our numerical algorithm and leads to encouraging results. In order to test the method further, we will realize in the second article of this series, a systematic description of more nuclei and observables obtained by applying the newly-developed numerical procedure with the same Gogny force. As raised in the present work, applications of the variational multiparticle-multihole configuration mixing method will however ultimately require the use of an extended and more constrained Gogny force.Comment: 22 pages, 18 figures, accepted for publication in Phys. Rev. C. v2: minor corrections and references adde

    Analysis Of Measured Transport Properties Of Domain Walls In Magnetic Nanowires And Films

    Full text link
    Existing data for soft magnetic materials of critical current for domain-wall motion, wall speed driven by a magnetic field, and wall electrical resistance, show that all three observable properties are related through a single parameter: the wall mobility μ\mu. The reciprocal of μ\mu represents the strength of viscous friction between domain wall and conduction-electron gas. And μ\mu is a function of the wall width, which depends in turn on the aspect ratio t/w, where t and w are the thickness and width of the sample. Over four orders of magnitude of μ\mu, the data for nanowires show μ(t/w)2.2\mu\propto (t/w)^{-2.2}. This dependence is in approximate agreement with the prediction of the 1984 Berger theory based on s-d exchange. On the other hand, it is inconsistent with the prediction of the 2004 Tatara and Kohno theory, and of the 2004 Zhang and Li theory.Comment: 7 pages, 1 figure; submitted to Phys. Rev.

    Gluon-gluon contributions to the production of continuum diphoton pairs at hadron colliders

    Full text link
    We compute the contributions to continuum photon pair production at hadron colliders from processes initiated by gluon-gluon and gluon-quark scattering into two photons through a four-leg virtual quark loop. Complete two-loop cross sections in perturbative quantum chromodynamics are combined with contributions from soft parton radiation resummed to all orders in the strong coupling strength. The structure of the resummed cross section is examined in detail, including a new type of unintegrated parton distribution function affecting azimuthal angle distributions of photons in the pair's rest frame. As a result of this analysis, we predict diphoton transverse momentum distributions in gluon-gluon scattering in wide ranges of kinematic parameters at the Fermilab Tevatron collider and the CERN Large Hadron Collider.Comment: 28 pages, 11 figures; published versio

    The Stellar Ages and Masses of Short GRB Host Galaxies: Investigating the Progenitor Delay Time Distribution and the Role of Mass and Star Formation in the Short GRB Rate

    Full text link
    [Abridged] We present optical and NIR observations of 19 short GRB host galaxies, aimed at measuring their stellar masses and population ages. The goals of this study are to evaluate whether short GRBs track the stellar mass distribution of galaxies, to investigate the progenitor delay time distribution, and to explore any connection between long and short GRB progenitors. Using single stellar population models we infer masses of log(M/M_sun)=8.8-11.6 and population ages of tau=0.03-4.4 Gyr. We further infer maximal masses of log(M/M_sun)=9.7-11.9 by assuming stellar population ages equal to the age of the universe at each host's redshift. Comparing the distribution of stellar masses to the general galaxy mass function we find that short GRBs track the cosmic stellar mass distribution only if the late-type hosts generally have maximal masses. However, there is an apparent dearth of early-type hosts compared to the equal contribution of early- and late-type galaxies to the cosmic stellar mass budget. These results suggest that stellar mass may not be the sole parameter controlling the short GRB rate, and raise the possibility of a two-component model with both mass and star formation playing a role. If short GRBs in late-type galaxies indeed track the star formation activity, the resulting typical delay time is ~0.2 Gyr, while those in early-type hosts have a typical delay of ~3 Gyr. Using the same stellar population models we fit the data for 22 long GRB hosts and find that they have lower masses and younger population ages, with =9.1 and =0.06 Gyr, respectively; their maximal masses are similarly lower, =9.6. Most importantly, the two host populations remain distinct even if we consider only the star-forming hosts of short GRBs, supporting our previous findings that the progenitors of long GRBs and short GRBs in late-type galaxies are distinct.Comment: Submitted to ApJ; 20 pages, 3 tables, 8 figure

    On the push&pull protocol for rumour spreading

    Full text link
    The asynchronous push&pull protocol, a randomized distributed algorithm for spreading a rumour in a graph GG, works as follows. Independent Poisson clocks of rate 1 are associated with the vertices of GG. Initially, one vertex of GG knows the rumour. Whenever the clock of a vertex xx rings, it calls a random neighbour yy: if xx knows the rumour and yy does not, then xx tells yy the rumour (a push operation), and if xx does not know the rumour and yy knows it, yy tells xx the rumour (a pull operation). The average spread time of GG is the expected time it takes for all vertices to know the rumour, and the guaranteed spread time of GG is the smallest time tt such that with probability at least 11/n1-1/n, after time tt all vertices know the rumour. The synchronous variant of this protocol, in which each clock rings precisely at times 1,2,1,2,\dots, has been studied extensively. We prove the following results for any nn-vertex graph: In either version, the average spread time is at most linear even if only the pull operation is used, and the guaranteed spread time is within a logarithmic factor of the average spread time, so it is O(nlogn)O(n\log n). In the asynchronous version, both the average and guaranteed spread times are Ω(logn)\Omega(\log n). We give examples of graphs illustrating that these bounds are best possible up to constant factors. We also prove theoretical relationships between the guaranteed spread times in the two versions. Firstly, in all graphs the guaranteed spread time in the asynchronous version is within an O(logn)O(\log n) factor of that in the synchronous version, and this is tight. Next, we find examples of graphs whose asynchronous spread times are logarithmic, but the synchronous versions are polynomially large. Finally, we show for any graph that the ratio of the synchronous spread time to the asynchronous spread time is O(n2/3)O(n^{2/3}).Comment: 25 page

    Degree Distribution of Competition-Induced Preferential Attachment Graphs

    Full text link
    We introduce a family of one-dimensional geometric growth models, constructed iteratively by locally optimizing the tradeoffs between two competing metrics, and show that this family is equivalent to a family of preferential attachment random graph models with upper cutoffs. This is the first explanation of how preferential attachment can arise from a more basic underlying mechanism of local competition. We rigorously determine the degree distribution for the family of random graph models, showing that it obeys a power law up to a finite threshold and decays exponentially above this threshold. We also rigorously analyze a generalized version of our graph process, with two natural parameters, one corresponding to the cutoff and the other a ``fertility'' parameter. We prove that the general model has a power-law degree distribution up to a cutoff, and establish monotonicity of the power as a function of the two parameters. Limiting cases of the general model include the standard preferential attachment model without cutoff and the uniform attachment model.Comment: 24 pages, one figure. To appear in the journal: Combinatorics, Probability and Computing. Note, this is a long version, with complete proofs, of the paper "Competition-Induced Preferential Attachment" (cond-mat/0402268

    Surgical approaches to adenocarcinoma of the gastroesophageal junction: the Siewert II conundrum.

    Get PDF
    BACKGROUND: The Siewert classification system for gastroesophageal junction adenocarcinoma has provided morphological and topographical information to help guide surgical decision-making. Evidence has shown that Siewert I and III tumors are distinct entities with differing epidemiologic and histologic characteristics and distinct patterns of disease progression, requiring different treatment. Siewert II tumors share some of the characteristics of type I and III lesions, and the surgical approach is not universally agreed upon. Appropriate surgical options include transthoracic esophagogastrectomy, transhiatal esophagectomy, and transabdominal extended total gastrectomy. PURPOSE: A review of the available evidence of the surgical management of Siewert II tumors is presented. CONCLUSIONS: Careful review of the data appear to support the fact that a satisfactory oncologic resection can be achieved via a transabdominal extended total gastrectomy with a slight advantage in terms of perioperative complications, and overall postoperative quality of life. Overall and disease-free survival compares favorably to the transthoracic approach. These results can be achieved with careful selection of patients balancing more than just the Siewert type in the decision-making but considering also preoperative T and N stages, histological type (diffuse type requiring longer margins that are not always achievable via gastrectomy), and the presence of Barrett\u27s esophagus

    Fluctuation Superconductivity in Mesoscopic Aluminum Rings

    Full text link
    Fluctuations are important near phase transitions, where they can be difficult to describe quantitatively. Superconductivity in mesoscopic rings is particularly intriguing because the critical temperature is an oscillatory function of magnetic field. There is an exact theory for thermal fluctuations in one-dimensional superconducting rings, which are therefore expected to be an excellent model system. We measure the susceptibility of many rings, one ring at a time, using a scanning SQUID that can isolate magnetic signals from seven orders of magnitude larger background applied flux. We find that the fluctuation theory describes the results and that a single parameter characterizes the ways in which the fluctuations are especially important at magnetic fields where the critical temperature is suppressed.Comment: Reprinted with permission from AAA

    Spatio-Temporal Scaling of Solar Surface Flows

    Full text link
    The Sun provides an excellent natural laboratory for nonlinear phenomena. We use motions of magnetic bright points on the solar surface, at the smallest scales yet observed, to study the small scale dynamics of the photospheric plasma. The paths of the bright points are analyzed within a continuous time random walk framework. Their spatial and temporal scaling suggest that the observed motions are the walks of imperfectly correlated tracers on a turbulent fluid flow in the lanes between granular convection cells.Comment: Now Accepted by Physical Review Letter
    corecore