49,594 research outputs found

    New Origin For Spin Current And Current-Induced Spin Precession In Magnetic Multilayers

    Full text link
    In metallic ferromagnets, an electric current is accompanied by a flux of angula r momentum, also called spin current. In multilayers, spatial variations of the spin current correspond to drive torques exerted on a magnetic layer. These torq ues result in spin precession above a certain current threshold. The usual kind of spin current is associated with translation of the spin-up and spin-down Ferm i surfaces in momentum space. We discuss a different kind of spin current, assoc iated with expansion and contraction of the Fermi surfaces. It is more nonlocal in nature, and may exist even in locations where the electrical current density is zero. It is larger than the usual spin current, in a ratio of 10 or 100, and is dominant in most cases. The new spin current is proportional to the differenc e Delta-mu = 0.001 eV between spin-up and spin-down Fermi levels, averaged over the entire Fermi surface. Conduction processes, spin relaxation, and spin-wave emission in the multilayer can be described by an equivalent electrical circuit resembling an unbalanced dc Wheatstone bridge. And Delta-mu corresponds to the output voltage of the bridge.Comment: 5 pages, 3 figures. To appear in J. Appl. Phys., vol. 89, May 15, 200

    A Modified Version of the Waxman Algorithm

    Full text link
    The iterative algorithm recently proposed by Waxman for solving eigenvalue problems, which relies on the method of moments, has been modified to improve its convergence considerably without sacrificing its benefits or elegance. The suggested modification is based on methods to calculate low-lying eigenpairs of large bounded hermitian operators or matrices

    Electron beam induced radio emission from ultracool dwarfs

    Get PDF
    We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short time-scale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of electromagnetic waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70νpe\nu_{\rm pe} (νpe\nu_{\rm pe} is the electron plasma frequency) in the non-relativistic case and from 10 to 600νpe\nu_{\rm pe} in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.Comment: 10 pages, 19 figures, accepted for publication in the Astrophysical Journa

    Sporadic Long-term Variability in Radio Activity from a Brown Dwarf

    Get PDF
    Radio activity has been observed in a large variety of stellar objects, including in the last few years, ultra-cool dwarfs. To explore the extent of long-term radio activity in ultra-cool dwarfs, we use data taken over an extended period of 9 hr from the Very Large Array of the source 2MASS J05233822-1403022 in September 2006, plus data taken in 2004. The observation taken in September 2006 failed to detect any radio activity at 8.46 GHz. A closer inspection of earlier data reveals that the source varied from a null detection on 3 May 2004, to \approx95 μ\muJy on 17 May 2004, to 230 μ\muJy on 18 June 2004. The lack of detection in September 2006 suggests at least a factor of ten flux variability at 8.46 GHz. Three short photometric runs did not reveal any optical variability. In addition to the observed pulsing nature of the radio flux from another ultra-cool source, the present observations suggests that ultra-cool dwarfs may not just be pulsing but can also display long-term sporadic variability in their levels of quiescent radio emission. The lack of optical photometric variability suggests an absence of large-scale spots at the time of the latest VLA observations, although small very high latitude spots combined with a low inclination could cause very low amplitude rotational modulation which may not be measurable. We discuss this large variability in the radio emission within the context of both gyrosynchrotron emission and the electron-cyclotron maser, favoring the latter mechanism.Comment: 7 pages, 2 figures, 1 table, accepted for publication in A&A Letter

    Improving the Convergence of an Iterative Algorithm Proposed By Waxman

    Get PDF
    In the iterative algorithm recently proposed by Waxman for solving eigenvalue problems, we point out that the convergence rate may be improved. For many non-singular symmetric potentials which vanish asymptotically, a simple analytical relationship between the coupling constant of the potential and the ground state eigenvalue is obtained which can be used to make the algorithm more efficient

    Dijet Event Shapes as Diagnostic Tools

    Full text link
    Event shapes have long been used to extract information about hadronic final states and the properties of QCD, such as particle spin and the running coupling. Recently, a family of event shapes, the angularities, has been introduced that depends on a continuous parameter. This additional parameter-dependence further extends the versatility of event shapes. It provides a handle on nonperturbative power corrections, on non-global logarithms, and on the flow of color in the final state.Comment: 18 pages, 3 figure

    Observing the Odderon: Tensor Meson Photoproduction

    Get PDF
    We calculate high-energy photoproduction of the tensor meson f2(1270)f_2(1270) by odderon and photon exchange in the reaction γ+pf2(1270)+X\gamma + {\rm{p}} \to f_2(1270) + {\rm{X}}, where X is either the nucleon or the sum of the N(1520) and N(1535) baryon resonances. Odderon exchange dominates except at very small transverse momentum, and we find a cross section of about 20 nb at a centre-of-mass energy of 20 GeV. This result is compared with what is currently known experimentally about f2f_2 photoproduction. We conclude that odderon exchange is not ruled out by present data. On the contrary, an odderon-induced cross section of the above magnitude may help to explain a puzzling result observed by the E687 experiment.Comment: 19 pages, 11 figure

    Spatio-Temporal Scaling of Solar Surface Flows

    Full text link
    The Sun provides an excellent natural laboratory for nonlinear phenomena. We use motions of magnetic bright points on the solar surface, at the smallest scales yet observed, to study the small scale dynamics of the photospheric plasma. The paths of the bright points are analyzed within a continuous time random walk framework. Their spatial and temporal scaling suggest that the observed motions are the walks of imperfectly correlated tracers on a turbulent fluid flow in the lanes between granular convection cells.Comment: Now Accepted by Physical Review Letter

    The Angular Size and Proper Motion of the Afterglow of GRB 030329

    Full text link
    The bright, nearby (z=0.1685) gamma-ray burst of 29 March 2003 has presented us with the first opportunity to directly image the expansion of a GRB. This burst reached flux density levels at centimeter wavelengths more than 50 times brighter than any previously studied event. Here we present the results of a VLBI campaign using the VLBA, VLA, Green Bank, Effelsberg, Arecibo, and Westerbork telescopes that resolves the radio afterglow of GRB 030329 and constrains its rate of expansion. The size of the afterglow is found to be \~0.07 mas (0.2 pc) 25 days after the burst, and 0.17 mas (0.5 pc) 83 days after the burst, indicating an average velocity of 3-5 c. This expansion is consistent with expectations of the standard fireball model. We measure the projected proper motion of GRB 030329 in the sky to <0.3 mas in the 80 days following the burst. In observations taken 52 days after the burst we detect an additional compact component at a distance from the main component of 0.28 +/- 0.05 mas (0.80 pc). The presence of this component is not expected from the standard model.Comment: 12 pages including 2 figures, LaTeX. Accepted to ApJ Letters on May 14, 200
    corecore