32 research outputs found

    Report and preliminary results of METEOR Cruise M 45/5, Bremen - Las Palmas, October 1 - November 3, 1999

    No full text
    Also Summary in GermanSIGLEAvailable from TIB Hannover: RO 7630(163) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Physical properties and core-log seismic integration from drilling at the Danube deep-sea fan, Black Sea

    No full text
    Highlights • Physical properties obtained from core and log data at the Danube deep sea fan are reported. • Core-log-seismic integration defines stratigraphic framework at the S2 channel. • All data suggest no gas hydrate is present at drill sites within uncertainties of methods employed. Abstract Drilling, coring, and geophysical logging were performed with the MARUM-MeBo200 seafloor drilling rig to investigate gas hydrate occurrences of the Danube deep sea fan, off Romania, Black Sea. Three sites within a channel-levee complex were investigated. Geophysical log data of P-wave velocity, electrical resistivity, and spectral gamma ray are combined with core-derived physical properties of porosity, magnetic susceptibility, and bulk density. Core- and log physical property data are used to define a time-depth conversion by synthetic seismogram modeling, which is then used to interpret the seismic data. Individual polarity reversed reflectors within the stratigraphic column drilled are linked to reduction in P-wave velocity and bulk density. Those reflectors (and associated reflection packages) are accompanied by distinct and systematic changes in sediment porosity, magnetic susceptibility, and electrical resistivity. Overall, the sediments at drill site GeoB22605 (MeBo-17) represent the younger (upper) levee sequence of the channel, that has been eroded at drill site GeoB22603 (MeBo-16). Splicing seismic data across the channel from the East (MeBo-16) to the West (MeBo-17) demonstrates the continuation of reflectors underneath the channel. The upper ∼50 m below seafloor (mbsf) at site MeBo-16 do not stratigraphically belong to the same sequence of the (deeper) levee-deposits. Above the marked erosional unconformity, sediments at Site MeBo-16 are likely derived by a mixture of repeated slump-events (identified as seismically transparent units) interbedded with hemi-pelagic sedimentation. Similarly, sediments within the upper ∼20 mbsf at Site MeBo-17 are not stratigraphically the same levee-deposits, but are derived by a mixture of slump-events (also seen in the marked seafloor amphitheatre architecture of a large failure complex extending further upslope) and hemi-pelagic sedimentation. All observations combined show that the seismically observed stratigraphic pattern represents a reflectivity sequence mostly driven by variations in density (porosity) and correspondingly by changes in P-wave velocity and electrical resistivity. All observations from the geophysical log- and core, as well as geochemical data do show no evidence for the presence of any significant gas hydrates within the drilled/cored sequences

    Simple, affordable, and sustainable borehole observatories for complex monitoring objectives

    No full text
    Seafloor drill rigs are remotely operated systems that provide a cost-effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. Here we report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. <br><br> Three different systems have been developed for the MARUM-MeBo (<b>Me</b>eresboden-<b>Bo</b>hrgerät) seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK (<b>C</b>irculation <b>O</b>bviation <b>R</b>etrofit <b>K</b>it), is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. In these MeBoCORKs, two systems have to be distinguished: the CORK-A (A stands for <b>a</b>utonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference); the CORK-B (B stands for <b>b</b>ottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by a remotely operated underwater vehicle (ROV) and utilises a hot-stab connection in the upper portion of the drill string. Either design relies on a hot-stab connection from beneath in which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect porewater in the osmo-sampler. The third design, the MeBoPUPPI (<b>P</b>op-<b>U</b>p <b>P</b>ore <b>P</b>ressure <b>I</b>nstrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data on command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to 2 weeks while sending the long-term data sets to shore. <br><br> In summer 2012, two MeBoPLUGs, one MeBoCORK-A and one MeBoCORK-B were installed with MeBo on RV <i>Sonne</i>, Germany, in the Nankai Trough area, Japan. We have successfully downloaded data from the CORKs, attesting that coupling to the formation worked, and pressure records were elevated relative to the seafloor reference. In the near future, we will further deploy the first two MeBoPUPPIs. Recovery of all monitoring systems by a ROV is planned for 2016
    corecore