138 research outputs found

    Giant anharmonicity suppresses superconductivity in AlH3_3 under pressure

    Get PDF
    The anharmonic self energy of two zone boundary phonons were computed to lowest order for AlH3_3 in the Pm3ˉnPm\bar 3n structure at 110 GPa. The wavevector and branch index corresponding to these modes are situated in a region of phase space providing most of the electron-phonon coupling. The self energies are found to be very large and the anharmonic contribution to the linewidth of one of the modes studied could be distinguished from the electron-phonon linewidth. It is found that anharmonicity suppresses the electron-phonon coupling parameter λ\lambda, providing a possible explanation for the disagreement between experiment and previous theoretical studies of superconductivity in this system.Comment: 10 pages, 4 figure

    Relativistic effects and fully spin-polarized Fermi surface at the Tl/Si(111) surface

    Get PDF
    We present a detailed analysis of the relativistic electronic structure and the momentum dependent spin-polarization of the Tl/Si(111) surface. Our first principle calculations reveal the existence of fully spin-polarized electron pockets associated to the huge spin-splitting of metallic surface bands. The calculated spin-polarization shows a very complex structure in the reciprocal space, strongly departing from simple theoretical model approximations. Interestingly, the electronic spin-state close to the Fermi surface is polarized along the surface perpendicular direction and reverses its orientation between different electron pockets

    Anharmonic stabilization of the high-pressure simple cubic phase of calcium

    Get PDF
    The phonon spectrum of the high-pressure simple cubic phase of calcium, in the harmonic approx- imation, shows imaginary branches that make it mechanically unstable. In this letter, the phonon spectrum is recalculated using density-functional theory (DFT) ab initio methods fully including anharmonic effects up to fourth order at 50 GPa. Considering that perturbation theory cannot be employed with imaginary harmonic frequencies, a variational procedure based on the Gibbs- Bogoliubov inequality is used to estimate the renormalized phonon frequencies. The results show that strong quantum anharmonic effects make the imaginary phonons become positive even at zero temperature so that the simple cubic phase becomes mechanically stable, as experiments suggest. Moreover, our calculations find a superconducting Tc in agreement with experiments and predict an anomalous behavior of the specific heat.Comment: 5 pages, 3 figure

    Spin-flip transitions and departure from the Rashba model in the Au(111) surface

    Get PDF
    We present a detailed analysis of the spin-flip excitations induced by a periodic time-dependent electric field in the Rashba prototype Au(111) noble metal surface. Our calculations incorporate the full spinor structure of the spin-polarized surface states and employ a Wannier-based scheme for the spin-flip matrix elements. We find that the spin-flip excitations associated with the surface states exhibit an important angular modulation which is completely absent in the standard Rashba model \cite{rashba}. Furthermore, we demonstrate that the maximum of the calculated spin-flip absorption rate is about twice the model prediction. These results show that although the Rashba model accurately describes the spectrum and spin polarization, it does not fully account for the dynamical properties of the surface states

    Breakdown of the Peierls substitution for the Haldane model with ultracold atoms

    Get PDF
    We present two independent calculations of the tight-binding parameters for a specific realization of the Haldane model with ultracold atoms. The tunneling coefficients up to next-to-nearest neighbors are computed ab-initio by using the maximally localized Wannier functions, and compared to analytical expressions written in terms of gauge invariant, measurable properties of the spectrum. The two approaches present a remarkable agreement and evidence the breakdown of the Peierls substitution: (i) the phase acquired by the next-to-nearest tunneling amplitude t1t_{1} presents quantitative and qualitative differences with respect to that obtained by the integral of the vector field A, as considered in the Peierls substitution, even in the regime of low amplitudes of A; (ii) for larger values, also ∣t1∣|t_{1}| and the nearest-neighbor tunneling t0t_{0} have a marked dependence on A. The origin of this behavior and its implications are discussed.Comment: 5 pages, 5 figure

    Structural and Superconducting Properties of Tungsten Hydrides Under High Pressure

    Get PDF
    Unveiling the relation between crystal structure and superconductivity of hydrides becomes a fascinating research area in chemistry and condensed-mater physics. Although much efforts have been made to study chemical reaction between tungsten and hydrogen, the crystal structures, superconductivity, and phase diagram of tungsten hydrides under high pressure have not been fully explored and built thus far. In this work, we carried out extensive structural search on W-H binary compounds through first-principles swarm-intelligence structural search calculations. Besides reproducing the known W-H compounds, a new stoichiometry WH5 with P6mm symmetry becomes stable above 230.2 GPa. Intriguingly, P6mm WH5 shows a critical temperature (Tc) value of 60.8 K, which is much higher than 31.6 K in WH6. This finding is different from the knowledge of compounds with higher H content exhibiting higher Tc, which might be attributed to the appearance of unique H network and tetrahedron H units in WH5. Electronic property and superconductivity of the other tungsten hydrides are also investigated. The built pressure-composition phase diagram provides some useful information for experimental synthesis

    Ab initio analysis of the topological phase diagram of the Haldane model

    Get PDF
    We present an ab initio analysis of a continuous Hamiltonian that maps into the celebrated Haldane model. The tunnelling coefficients of the tight-binding model are computed by means of two independent methods - one based on the maximally localized Wannier functions, the other through analytic expressions in terms of gauge-invariant properties of the spectrum - that provide a remarkable agreement and allow to accurately reproduce the exact spectrum of the continuous Hamiltonian. By combining these results with the numerical calculation of the Chern number, we are able to draw the phase diagram in terms of the physical parameters of the microscopic model. Remarkably, we find that only a small fraction of the original phase diagram of the Haldane model can be accessed, and that the topological insulator phase is suppressed in the deep tight-binding regime.Comment: 11 pages, 9 figure

    Self-consistent tight-binding description of Dirac points moving and merging in two dimensional optical lattices

    Get PDF
    We present an accurate ab initio tight-binding model, capable of describing the dynamics of Dirac points in tunable honeycomb optical lattices following a recent experimental realization [L. Tarruell et al., Nature 483, 302 (2012)]. Our scheme is based on first-principle maximally localized Wannier functions for composite bands. The tunneling coefficients are calculated for different lattice configurations, and the spectrum properties are well reproduced with high accuracy. In particular, we show which tight binding description is needed in order to accurately reproduce the position of Dirac points and the dispersion law close to their merging, for different laser intensities.Comment: 11 pages, 16 figure
    • …
    corecore