59 research outputs found

    The Difficulties of Learning Logic Programs with Cut

    Get PDF
    As real logic programmers normally use cut (!), an effective learning procedure for logic programs should be able to deal with it. Because the cut predicate has only a procedural meaning, clauses containing cut cannot be learned using an extensional evaluation method, as is done in most learning systems. On the other hand, searching a space of possible programs (instead of a space of independent clauses) is unfeasible. An alternative solution is to generate first a candidate base program which covers the positive examples, and then make it consistent by inserting cut where appropriate. The problem of learning programs with cut has not been investigated before and this seems to be a natural and reasonable approach. We generalize this scheme and investigate the difficulties that arise. Some of the major shortcomings are actually caused, in general, by the need for intensional evaluation. As a conclusion, the analysis of this paper suggests, on precise and technical grounds, that learning cut is difficult, and current induction techniques should probably be restricted to purely declarative logic languages.Comment: See http://www.jair.org/ for any accompanying file

    Learning Relations: Basing Top-Down Methods on Inverse Resolution

    Get PDF
    Abstract Top-down algorithms for relational learning specialize general rules until they are consistent, and are guided by heuristics of different kinds. In general, a correct solution is not guaranteed. By contrast, bottom-up methods are well formalized, usually within the framework of inverse resolution. Inverse resolution has also been used as an efficient tool for deductive reasoning, and here we prove that input refutations can be translated into inverse unit refutations. This result allows us to show that top-down learning methods can be also described by means of inverse resolution, yielding a unified theory of relational learning

    Learning automata with side-effects

    Get PDF
    Automata learning has been successfully applied in the verification of hardware and software. The size of the automaton model learned is a bottleneck for scalability, and hence optimizations that enable learning of compact representations are important. This paper exploits monads, both as a mathematical structure and a programming construct, to design and prove correct a wide class of such optimizations. Monads enable the development of a new learning algorithm and correctness proofs, building upon a general framework for automata learning based on category theory. The new algorithm is parametric on a monad, which provides a rich algebraic structure to capture non-determinism and other side-effects. We show that this allows us to uniformly capture existing algorithms, develop new ones, and add optimizations

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    An investigation of the predictability of the Brazilian three-modal hand-based behavioural biometric: a feature selection and feature-fusion approach

    Get PDF
    Abstract: New security systems, methods or techniques need to have their performance evaluated in conditions that closely resemble a real-life situation. The effectiveness with which individual identity can be predicted in different scenarios can benefit from seeking a broad base of identity evidence. Many approaches to the implementation of biometric-based identification systems are possible, and different configurations are likely to generate significantly different operational characteristics. The choice of implementational structure is, therefore, very dependent on the performance criteria, which is most important in any particular task scenario. The issue of improving performance can be addressed in many ways, but system configurations based on integrating different information sources are widely adopted in order to achieve this. Thus, understanding how each data information can influence performance is very important. The use of similar modalities may imply that we can use the same features. However, there is no indication that very similar (such as keyboard and touch keystroke dynamics, for example) basic biometrics will perform well using the same set of features. In this paper, we will evaluate the merits of using a three-modal hand-based biometric database for user prediction focusing on feature selection as the main investigation point. To the best of our knowledge, this is the first thought-out analysis of a database with three modalities that were collected from the same users, containing keyboard keystroke, touch keystroke and handwritten signature. First, we will investigate how the keystroke modalities perform, and then, we will add the signature in order to understand if there is any improvement in the results. We have used a wide range of techniques for feature selection that includes filters and wrappers (genetic algorithms), and we have validated our findings using a clustering technique

    Continuous and transparent multimodal authentication: reviewing the state of the art

    Get PDF
    Individuals, businesses and governments undertake an ever-growing range of activities online and via various Internet-enabled digital devices. Unfortunately, these activities, services, information and devices are the targets of cybercrimes. Verifying the user legitimacy to use/access a digital device or service has become of the utmost importance. Authentication is the frontline countermeasure of ensuring only the authorized user is granted access; however, it has historically suffered from a range of issues related to the security and usability of the approaches. They are also still mostly functioning at the point of entry and those performing sort of re-authentication executing it in an intrusive manner. Thus, it is apparent that a more innovative, convenient and secure user authentication solution is vital. This paper reviews the authentication methods along with the current use of authentication technologies, aiming at developing a current state-of-the-art and identifying the open problems to be tackled and available solutions to be adopted. It also investigates whether these authentication technologies have the capability to fill the gap between high security and user satisfaction. This is followed by a literature review of the existing research on continuous and transparent multimodal authentication. It concludes that providing users with adequate protection and convenience requires innovative robust authentication mechanisms to be utilized in a universal level. Ultimately, a potential federated biometric authentication solution is presented; however it needs to be developed and extensively evaluated, thus operating in a transparent, continuous and user-friendly manner
    • …
    corecore