View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CiteSeerX

Learning Relations: Basing Top-Down
Methods on Inverse Resolution

F. Bergadano! and D. Gunetti?

YUniversity of Catania, via A. Doria 6/A,
95100 Catania, Italy, bergadan@mathct.cineca.it

2University of Torino, corso Svizzera 185,
10149 Torino, Italy, gunetti@di.unito.it

Abstract

Top-down algorithms for relational learning specialize general rules un-
til they are consistent, and are guided by heuristics of different kinds. In
general, a correct solution is not guaranteed. By contrast, bottom-up
methods are well formalized, usually within the framework of inverse reso-
lution. Inverse resolution has also been used as an efficient tool for deduc-
tive reasoning, and here we prove that input refutations can be translated
into inverse unit refutations. This result allows us to show that top-down
learning methods can be also described by means of inverse resolution,
yielding a unified theory of relational learning.

Keywords: Machine learning, Automated reasoning, Relational Learn-
ing.

1 Introduction

Recently, in the Machine Learning community there has been a growing interest
on relational learning algorithms, which learn restricted first order formulas
from positive and negative examples. Early work is well represented by Plotkin’s
study on least general generalizations [8] and Shapiro’s Model Inference System
[10]. The former is related to the problem of generalizing clauses, as a basis for
the bottom-up induction of logic formulas: the least general generalization of a
number of examples will serve as a compressed description. The latter is based
on the top-down specialization of clauses, until a set of Horn formulas which is
consistent with the available examples is produced. These works have guided
much of the recent research. Plotkin’s idea of least general generalizations of
logic formulas has inspired later work on “inverse resolution” [7], while providing
the basis for most bottom-up approaches to the induction of logic programs [6].

https://core.ac.uk/display/357578632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Shapiro’s use of a refinement operator is a natural reference for recent top-down
clause induction methods [9, 2].

Early and more recent methods must now be analyzed w.r.t. some criterion
of inductive success. The most natural property one may require is that the
learned description P behaves correctly on the given examples E:

Definition 1 A description P is complete w.r.t. E, iff VeT€E P+ eT.
Definition 2 A description P is consistent w.r.t. E, iff Ve"€E P/ e™.

If we suppose that an inductive method accepts as input a set of examples
and prior information (an inductive bias) in the form of a set P of allowed
descriptions, the two properties defined below are desirable:

Definition 3 An induction procedure M is correct iff whenever M terminates
successfully and M(E,P)=P, then P is complete and consistent w.r.t. E.

Definition 4 An induction procedure M is sufficient iff whenever a complete
and consistent description w.r.t. E exists in P, then M(E,/P) will output one
such description.

Completeness and consistency of the learned descriptions was considered im-
portant in previous Machine Learning research and is easily obtained for propo-
sitional and non-recursive relational rules. However, when we move to recursive
clauses, or to the problem of learning multiple predicates, the above require-
ments are not always met. In fact, most systems generate candidate program
clauses one at a time in a top-down fashion, and check them against the ex-
amples independently of one another. For instance, the clause “p(X) :- q(X,Y),
p(Y).” is normally said to cover the example p(a) if there is a positive example
q(a,b) of q such that p(b) is a positive example of p. Other clauses for p and
q (e.g. those learned previously) are not used to try a derivation for q(a,b) and
p(b). In other words, clauses are evaluated extensionally at the time of learning.
However, when the final description has been learned, at the time of testing,
it will be used intensionally and this may yield unexpected results, e.g. posi-
tive examples that were found to be covered may not be derived, while valid
proofs for negative examples may become possible [1]. As a consequence, well
known systems such as Foil [9] and Golem [6] are not correct nor sufficient [1].
Some systems do solve the problem while keeping the extensional evaluation of
clauses by asking queries to the user, so that missing examples are provided
and unexpected derivations cannot be found [10]. However, these systems are
incremental, and added examples may require backtracking.

A consequence of the above considerations is that top-down methods, which
evaluate clauses extensionally, are considered to be empirical and heuristic, with-
out a strong formal basis. This is aggravated by the fact that most top-down
systems do not explore the whole hypothesis space, but use statistical informa-
tion in order to guide the search. This is usually contrasted with Bottom-up
methods based on inverse resolution, which can proved to be theoretically well

founded [6]. In this paper we show that it is possible to give a theoretical basis to
extensional top-down learning methods by restating them in terms of a special
kind of inverse resolution not employing inverse unifiers.

Here is the plan of the paper: in the second section we briefly review the
extensional learning approach. In the third section we describe the basics of
inverse resolution in theorem proving and clarify the relationship between input
and linear resolution, as first pointed out by Chang. In the fourth section we use
the results of section three to show how extensional methods can be rewritten
in terms of theorem proving with inverse resolution.

2 Relational Learning Algorithms based on Ex-
tensionality

Many systems, such as Foil [9] and Golem [6] learn concepts described by means
of Horn clauses. Clauses are evaluated extensionally, since in this way candidate
clauses can be generated directly from the examples one at a time and inde-
pendently of one another. The basic learning algorithm of such systems can be
described as follows:

Let P be the target concept and pos_examples(P) and neg_examples(P) the given
positive and negative examples of P (in the following, o and «y represent generic
conjunction of literals).

Extensional top-down learning method:

while pos_examples(P) # 0 do
Generate one clause “P(X) - a(X,Y)";
pos_examples(P) « pos_examples(P) — pos(«)

Generate one clause:
a «— true;
while pos(a) # 0 do
if neg(a) = () then return(P(X) - a)
else choose a predicate Q and its arguments Args;
o — a A Q(Args)

where pos(a) and neg(a) are the sets of positive and negative examples of P
covered by P:-a, i.e. the examples P(@) such that T U E U P(X):-a + P(a).
Where E is the set of given examples and T is a user-given Horn Theory. The
presence of E means that some predicates (in particular the one representing the
target concept) are not derived from T but immediately found among the given
examples.

The choice of the literal Q(Args) to be added to the partial antecedent « of
the clause being generated is guided by heuristic information. It might never-
theless be a wrong choice in some cases, in the sense that it causes the procedure

“Generate one clause” to fail by exiting the while loop without returning any
clause. This problem can be remedied by making the choice of Q(Args) a back-
tracking point.

We illustrate the method on the task of learning the append relation:

pos(append) = {append([],[b],[b]), append([a],[b],[a,b]).}
neg(append) = {append([},[b],[]), append([a],[b],[b]).}

we also know that append depends on the following set of predicates, with their
usual definition supplied (except for append, of course):

null, head, tail, cons, assign, append.

This is an important information, but obviously still very far away from the
actual description that we want to learn: we need to associate variables to
these predicates, and divide the obtained literals among the unknown number
of clauses that will be necessary.

The algorithm starts to generate the first clause - the antecedent « is initially
empty. We need to choose the first literal Q(Args) to be added to a. As we
have left the heuristics unspecified, we will choose it so as to make the discussion
short. Variables are taken from the clause head, or from a finite set of additional
typed variables.

Let a=assign(Y,Z). A positive example is covered, but we cannot accept the
clause

append(X,Y,Z) - assign(Y,Z) as it is, because its body is true for the negative
example append([],[b],[b]), so more literals need to be added.

Let a=assign(Y,Z) A null(X); the first example is covered and no wrong outputs
can be computed. A clause is generated and the covered example append([],[b],[b])
is removed from examples(append).

We proceed to the generation of another clause; « is empty again. Suppose we
have already generated a=head(X,H) A tail(X,T); the remaining positive exam-
ple is covered, but again we have to specialize because « is true for the second
negative example.

Let o = head(X,H) A tail(X,T) A append(T,Y,W); this clause again exten-
sionally covers the remaining example. In fact, we have that head([a],a) and
tail([a,],[]) are true, and append([],[b],[b]) is a given example. However, the sec-
ond negative example is still covered (moreover, the output variable Z is not
instantiated), and the procedure needs to be continued.

At the next step, suppose we add the literal cons(H,W,Z), obtaining, e.g.,

a = head(X,H) A tail(X,T) A append(T,Y,W) A cons(H,W,Z)

which covers all positive examples and none of the negative ones.

The final solution turns out to be:

append(X,Y,Z) - assign(Y,Z), null(X).
append(X,Y,Z) - head(X,H), tail(X,T), append(T,Y,W), cons(H,W,Z).

3 Inverse Refutations and the Relationship be-
tween Input and Unit Resolution

Inverse Resolution has been used as an effective tool for learning Horn Clauses
from examples [7]. The basic idea is that a clause C5 is “learned” from an
example C and a clause C given in the background knowledge if C is the resol-
vent of Cy and Cy. In [4] we show that inverse resolution can also be the basis
for efficient forms of deductive reasoning, with a procedure which we shall call
inverse refutation. The idea is simply to invert the refutation process based on
resolution, in order to go from the empty clause to the given clause set instead
of vice versa. This results in a strongly guided refutation process, because it
is based on the form of the given clauses. Intuitively, a clause is generated by
means of inverse resolution only if it is a subset (proper or not) of a given clause.
The process of inverse refutation ends when all clauses (or at least a minimally
unsatisfiable subset of them) have been reconstructed, and if read in its turn in
reverse order it appears just like a usual classical refutation of the given set. in
the following, we assume familiarity with the basic concepts of resolution and
theorem proving as in [5]. We remember that in unit deductions at least one of
the parent clauses involved in a resolution step is a unit clause, while in input
deductions at least one of the parent clauses is one of those given initially.

We illustrate the method on the following set S of clauses.

cl = ACH, ¢2 = AD, ¢3 = -A, ¢4 = B-C, ¢6 = =B, ¢6 = —H.

Just as resolution of two complementary unit clauses is the last step in a classical
deduction, it is the first step of the inverse resolution deduction. Initially we have
the empty clause; we open two branches and label them with two complementary
unit clauses consisting of the first two complementary literals (say A and —A)
found in the given set (we will build the inverse refutation from bottom to top,
so it reads from top to bottom as a classical resolution refutation - see Fig. 1a,
first step). Now we focus attention on the two unit clauses. If a refutation for
S exists in which the last step resolves these two units, then there must exist
an (inverse) deduction of each of them separately. Hence we have decomposed
the problem of deriving the empty clause into the two independent subproblems
of deriving the chosen unit clauses. Obviously, both of these subproblems must
be solved, so they share an and relationship. On the other hand, we could have
chosen different pairs of complementary literals to start the deduction, and a
solution stemming from any of those choices is sufficient, so there we see an or
relationship. Hence, our search for an inverse deduction will take the form of a
typical and-or search tree.

Consider A. Since there are two clauses in the given set containing A (namely,

cl and ¢2), we open from A two new pairs of branches. The first pair corresponds
to clause ¢l and one of its branches is labeled AC (intuitively A with C added)
because C is the next unexplored literal of cl. The other branch is labeled
with —C, the unit clause built from the complementary of the literal added
(Fig. 1la, second step). The second pair of branches corresponds to ¢2 and is
labeled with AD and —D via a similar analysis. In general, corresponding to
every given clause that contains the literal of the clause to be derived, there is a
possible derivation. These derivations are or-related subproblems. Each of these
subproblems corresponds to a choice of one such given clause and is, in turn,
expressed as two and-related tasks: in one, a new literal from the given clause
under consideration is added to the clause to be derived (thus this new vertex
is labeled with a larger subset of the given clause chosen). The other is the
problem of deriving the unit clause consisting of the complement of the added
literal. So in our example, the two pairs of branches opened from A are two or
tasks, and the branches in each pair are and tasks. In this example, to give a
derivation of A we must demonstrate that there exists a derivation of the two
clauses AC and —C, or that there exists a derivation of AD and —D.

Now again we must give attention separately to the two pairs of opened
branches trying to build a complete (inverse) derivation of A. Let us concentrate
only on the first pair of branches. On the right branch we are rebuilding the
clause cl, so from the current clause AC (a subset of c1) we open two branches.
One of them is labeled with AC to which we add H, the remaining literal of
cl, and the other is labeled with its complementary —H (Fig. 1a, third step).
But now the two new generated clauses belong to the given set and so there is
nothing more to do with their subtasks. Now, only an and branch remains to be
considered, the one labeled with —C, and we note that there is only one given
clause containing it, so at its top we open a new pair of branches labeled with
B-C and —B respectively (Fig.1la, fourth step). We note that these two clauses
belong to S, and because also clause —A is a given one, the inverse refutation
is completed and all the other or branches opened while trying to derive A can
be discarded. If read from top to bottom, the inverse refutation represents a
classical unit derivation of the empty clause from the given set.

It should be noted that the strategy described here only builds unit refuta-
tions. See [4] for the complete strategy. In 1970 Chang proved an interesting
relationship between unit and input resolution: a set of ground clauses S has a
unit proof if and only if it has an input proof [5] (we recall that an input deriva-
tion is also a linear one). Here we clarify this relationship via inverse resolution,
with the following theorems (Proofs can be found in [3]).

Theorem 1. For every input refutation of an unsatisfiable set .S of propositional
clauses there exists an inverse unit refutation for S where the same literals are

introduced in the same order they are resolved in the input refutation.

The above relationship is much more easy to understand visually. Fig. 1b

reports the input refutation corresponding to the inverse unit refutation of Fig.
la. Equally numbered operations involve the same occurrences of the same lit-
erals (Fig. 1b must be read from top to bottom).

-A-C-H A

. 1

“BC B H ‘!f\ﬁCﬁH
4 3 -C-H ~BC
2
—-A=-D C —-A-C
R -H-B H
2

3

_“;\ AA _‘B B
1
4
O a b O

Figure 1: Fig. la and 1b. (Inverse) unit and input refutation for S.

Extending inverse resolution to first order logic requires, in principle, the
use of inverse substitutions, as in 7], whose computation can have exponential
complexity. The next theorem shows that this is not the case if we limit our-
selves to input deductions without factoring (in fact, an equivalent property for
deductions using factoring can be easily obtained from the next theorem).

Definition 5 In our framework, we define inverse resolution refutations in
first order logic as follows (for simplicity we always assume literals 1 and =1’ to
have disjoint variables. Let |l| denote the atom of literal 1).

At the first step, if there exist in the given set of clauses two literals 1 and —I’
and a substitution o; such that |loq| = |-1'01|, then we can open from the empty
clause two branches labeled respectively |lo1| and |-'oy].

Suppose now that the first literal of a clause A has been introduced at the j-th
step in an inverse refutation using substitution o;. Then, at the k-th step it
is allowed to add a literal 1 to the subset of A built up to that point via in-
verse resolution using a complementary literal =’ if and only if 3 o such that
lojojt1...0x] = |"lok|, where 0j,...,04,—1 are the unifiers used between steps j
and k-1.

The inverse refutation is completed when all branches are labeled with clauses
from the given set, ignoring the introduced unifiers.

The above definition of inverse refutation in first order logic is justified by the
following theorem:

Theorem 2. For every input refutation of an unsatisfiable set S of clauses there
exists a inverse unit refutation of S where complementary literals are introduced
in the same order they are resolved within the input refutation and where the
same unifiers are involved.

Observe that, while in propositional calculus inverse deductions read from
top to bottom appear to be ordinary deductions, in first order logic this is no
longer true. In Fig. 2a an input refutation for an unsatisfiable set of clauses is
shown, while Fig. 2b reports the corresponding inverse unit refutation. Note
how the inverse refutation, if read from top to bottom, does not turn out to
be an ordinary refutation (for simplicity, first order literals are represented with
only capital letters, without reporting their terms. But two literals A and —A
are considered to be complementary only if there exists a substitution o such
that |Ao| = |-Ad]).

(~A-B)oy (A=Clay

1 CO’;;—‘DU;;(H D0',1
(_‘BO_]_|CU'[)0'2 (B)Uz 4
2 Boy —=Ao;—Booy Cos Ao =Coo903
<—|C0'10'2)0'3 (C“D)O’g 2 3
3
—-Aogy Aoy
(-Dosjor (D)oy
1
p O
O a b

Figure 2: Fig. 2a and 2b. An input refutation an the corresponding inverse unit
refutation

4 Learning Horn Theories

An important subset of first order logic which admits input (and hence unit) refu-
tation is the set of Horn clauses, and because inverse resolution builds clauses,
theorem 2 seems to suggest a way to build (i.e. to learn) Horn theories from
ground examples. If P(a,b) is a positive example of a concept P, then there
exists an input refutation of P U —P(a,b) with —P(a,b) as top clause. But, by
theorem two, there exists also a corresponding inverse unit refutation of P U
—P(a,b) which, in fact, rebuilds the clauses of P (or, at least, those effectively
involved in the refutation).

Now, suppose we do not have a Horn description of a concept P. We only
know that P may depend on a given set of predicates, where every predicate can
be defined by means of logical rules or with a set of positive and negative ground
instances. Obviously, at least P is only defined by a set of positive and negative
instances. Then, applying inverse resolution as in the previous section, we can
build an inverse unit refutation starting with a positive example P(a,b) of P and
where the leaves of the proof tree represent a possible (partial) description of P.
We can stop the inverse refutation (in this case, the learning process) for that
example when that partial description does not entail any of the given negative
examples of P.

In this section we show that the learning process of section two can be re-
stated in the above terms of clause construction via inverse resolution (in the
following, the empty clause will be indicated with “:-”, T will be the set of in-
tensional definitions and E the given positive examples. C will be the clause we
are currently learning).

As we have seen in section two, given a positive example P(a,b), where P is an
inductive predicate (i.e. the concept to be learned) we start guessing the unit
clause C = P(X,Y). In terms of inverse refutation, this means to start from the
empty clause “-”, opening one branch labeled —P(a,b) and the other labeled
Coy (where o1 = {X/a, Y/b}). Because obviously C derives negative examples
of P, (in this case, (Ve~) CU T U E F e7) we must specialize (i.e. add literals
to) its body.

At the next step, we choose a literal @1(Args) such that the body of C
= P(X)Y) - Q1(Args) is extensionally evaluated to true on example P(a,b).
Within inverse resolution, this means that there exists a substitution o5 such that
Q1(Args)oi0 is a given positive example of @ (if it is defined extensionally)
or it is derivable from its definition (if it is defined by means of logical rules - in
fact, in this case we have not to start an inverse derivation for Q1 (Args), because
we already have a definition for Q).

In general, at the k+1-th step, we can add literal Qx(Args) to the body of
C if there exists a substitution o;41 such that Q(Args)oy, ..., ok+1 is a positive
example of Q) or it is derivable from its definition.

In extensional top-down learning methods we stop when C does not cover
any of the negative examples, and still P(a,b) is covered. If no such C can be
found, then backtracking occurs. Within inverse resolution this means that it

must not be the case that C U T U E I e~ for any negative example e~. Oth-
erwise, alternative paths from the empty clause for example P(a,b) must be tried.

We clarify the above relationship by restating the learning task of append
in terms of inverse resolution. Suppose we are given the following ground unit
clauses, which are the positive examples of append:

et = append([Lb],[b]), ef = append([al,[b],[a,b]),

and the two negated clauses

ey = —append([],[b],[]), e; = —append([a],[b],[b]),

which are negative examples of append. We are also given the following set L of
literals, that make it possible to build a description of append (we assign vari-
ables to literals in order to make the discussion short):

{null(X), head(X,H), tail(X,T), cons(H,W,Z), assign(Y,Z), append(T,Y,W)}

where predicates, except for append, are defined as follows (call T this set of
definitions):

null(f],).
head([A|],A).
tail([-|B],B).
cons(C,D,[C|D]).
assign(E,E).

Now we start the learning task by looking for a clause C such that C U T U
{ef} U {=eg} is unsatisfiable (again for brevity, we do not consider alternative
paths).

We start from the empty clause and generate two branches, one labeled —ap-
pend([a],[b],[a,b])o1 and the other one labeled C = append(X,Y,Z)o1, with o1 =
{X/[a], Y/[b], Z/[a,b]}. Because (¥ e~) C U T U {e]} F e, we must continue
the inverse derivation.

At the next step, suppose we select from L the literal head(X,H). From C we
open two branches, one labeled head([A|_],A)o2 and the other one labeled

C = append(X,Y,Z)o; :- head(X,H)o109
with o9 = {A/a, H/a}.

At the third step, tail(X,T) is selected, and from C we open one branch la-
beled tail([_|B],B)cs and the other labeled:
C = append(X,Y,Z)o; :- head(X,H)o102, tail(X,T)o10203

with o3 = {B/]], T/[|}

At the fourth step append(T,Y,W) is selected, and from C we open a branch
labeled append({[],[b],[b])os and the other one labeled

C = append(X,Y,Z)oy :- head(X,H)oq 02, tail(X,T)o10203,
append(T,Y,W) o1020304
with o4 = {T/[], W/[b]}.

Finally, cons(H,W,Z) is selected, and from C we open one branch labeled:
cons(C,D,[C|D])os and the other one labeled:

C = append(X,Y,Z)o; :- head(X,H)o102, tail(X,T)o1 0203,
append(T,Y,W)o1020304, cons(H,W,Z) 0102050405.
with o5 = {C/a, D/[b]}.

At this point it is the case that V e~ C U T U {e]} I/ e~. It can be easily
verified that there exists an input refutation of C U T U {ef} U {—ej } where
at the first step C is resolved against ﬂej and where the substitutions oy,..., o5
are employed, in that order.

By removing substitutions introduced along the inverse refutation,

C= append(X,Y,Z) :- head(X,H), tail(X,T), append(T,Y,W), cons(H,W,Z)

represents the first learned clause for append. It should be noted that the used
substitutions correspond to the assignment of values to variables performed in
the extensional evaluation of the body of C, in section two.

A similar procedure could then be followed to learn the non-recursive clause of
append.

5 Conclusion

We have argued that theorem proving with inverse resolution represents a the-
oretical basis for top-down extensional learning methods. Our result can have
many interesting consequences.

First, the method suggests how to query the user for missing examples, by
possibly asking for the truth values of the unit clauses used in every inverse
resolution step. Obviously, the number of queries depends on the size of the
hypothesis space and on the chosen variabilization for the various predicates.
However, it has been shown [10, 2] that queries provide the basis for inductive
methods which are efficient if appropriate syntactic restrictions are adopted.

Second, such methods can also be proved to be correct and sufficient as
defined in the introduction [2], and the present paper can also be seen as an
alternative argument for proving the same results. In fact, if a correct Horn
theory exists in the hypothesis space, an input refutation from all the given and

queried examples is possible. But then these clauses may be learned by means
of some inverse unit refutation. The argument of section 4 will then imply that
top-down learning of a complete and consistent program is also possible.

Third, some computational problems of inverse resolution, as developed in
[7], are avoided because inverse substitutions need not be computed.

Finally, our results suggest that one initial given positive example is suffi-
cient to learn all the clauses necessary to derive it (if they exist in the hypothesis
space). This means that, most of the time, one well chosen example is sufficient
to learn a complete description of a concept. This should be contrasted with
classical extensional methods, where a lot of examples are required.

Acknowledgments: This work was in part supported by BRA ESPRIT III
Project 6020 on Inductive Logic Programming.

References

[1] F. Bergadano. Inductive Data Base Relations. To appear in IEEE Trans.
on Data and Knowledge Engineering, 1993.

[2] F. Bergadano and D. Gunetti. An Interactive System to Learn Functional
Logic Programs. In Proc. 13th Int. Joint Conf. on Artificial Intelligence,
Chambery, France, 1993. Morgan Kaufmann.

[3] F. Bergadano and D. Gunetti. Unifying top-down and inverse resolution
approaches to inductive logic programming. Technical report, 1993. (Tech.
Rep. 93.3.28, CS Dept., Univ. of Torino.

[4] D. Gunetti. Efficient Proofs in Propositional Calculus with Inverse Reso-
lution. In P. Dewilde and J. Vanderwalle, editors, Proc. of the CompFEuro,
The Hague, 1992. IEEE Comp. Soc. Press.

[5] D. W. Loveland. Automated Theorem Proving: A Logical Basis. North
Holland, Amsterdam, 1978.

[6] S. Muggleton. Inductive Logic Programming. New Generation Computing,
8(4):295-318, 1991.

[7] S. Muggleton and W. Buntine. Machine Invention of First Order Predi-
cates by Inverting Resolution. In Proc. of the Fifth Int. Conf. on Machine
Learning, pages 339-352, Ann Arbor, MI, 1988. Morgan Kaufmann.

[8] G. Plotkin. A Note on Inductive Generalization. In B. Meltzer and
D. Michie, editors, Machine Intelligence 5, pages 153-163. Edinburgh Univ.
Press, 1970.

[9] J.R. Quinlan. Learning Logical Definitions from Relations. Machine Learn-
ing, 5(3):239-266, 1990.

[10] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge,
MA, 1983.

