39 research outputs found

    Implications of νˉeeWγ\bar{\nu}_{e}e^{-}\to W^{-}\gamma for high-energy νˉe\bar{\nu}_e observation

    Full text link
    Absorption of high-energy νˉe\bar{\nu}_e over electrons above the W boson production threshold is reexamined. It is pointed out that, in the case of photon emissions along the direction of incident high-energy νˉe\bar{\nu}_e, the kinematically allowed average energy carried by the final state hard photon can be 1\leq 1% of the incident νˉe\bar{\nu}_e energy above the W boson production threshold. The differential energy spectrum for the final state hard photon is calculated. We also discuss implications of our results for the prospective search of high-energy νˉe\bar{\nu}_e through this final state hard photon.Comment: 9 pages, 3 figures, RevTe

    Topological transition in a two-dimensional model of liquid crystal

    Full text link
    Simulations of nematic-isotropic transition of liquid crystals in two dimensions are performed using an O(2) vector model characterised by non linear nearest neighbour spin interaction governed by the fourth Legendre polynomial P_4P\_4. The system is studied through standard Finite-Size Scaling and conformal rescaling of density profiles of correlation functions. A topological transition between a paramagnetic phase at high temperature and a critical phase at low temperature is observed. The low temperature limit is discussed in the spin wave approximation and confirms the numerical results

    Magnetization Process of the Classical Heisenberg Model on the Shastry-Sutherland Lattice

    Full text link
    We investigate classical Heisenberg spins on the Shastry-Sutherland lattice and under an external magnetic field. A detailed study is carried out both analytically and numerically by means of classical Monte-Carlo simulations. Magnetization pseudo-plateaux are observed around 1/3 of the saturation magnetization for a range of values of the magnetic couplings. We show that the existence of the pseudo-plateau is due to an entropic selection of a particular collinear state. A phase diagram that shows the domains of existence of those pseudo-plateaux in the (h,T)(h, T) plane is obtained.Comment: 9 pages, 11 figure

    Charge Transport in the Dense Two-Dimensional Coulomb Gas

    Full text link
    The dynamics of a globally neutral system of diffusing Coulomb charges in two dimensions, driven by an applied electric field, is studied in a wide temperature range around the Berezinskii-Kosterlitz-Thouless transition. I argue that the commonly accepted ``free particle drift'' mechanism of charge transport in this system is limited to relatively low particle densities. For higher densities, I propose a modified picture involving collective ``partner transfer'' between bound pairs. The new picture provides a natural explanation for recent experimental and numerical findings which deviate from standard theory. It also clarifies the origin of dynamical scaling in this context.Comment: 4 pages, RevTeX, 2 eps figures included; some typos corrected, final version to be published in Phys. Rev. Let

    Probing d-wave pairing correlations in the pseudogap regime of the cuprate superconductors via low-energy states near impurities

    Get PDF
    The issue of probing the pseudogap regime of the cuprate superconductors, specifically with regard to the existence and nature of superconducting pairing correlations of d-wave symmetry, is explored theoretically. It is shown that if the d-wave correlations believed to describe the superconducting state persist into the pseudogap regime, but with pair-potential phase-fluctuations that destroy their long-range nature, then the low-energy quasiparticle states observed near extended impurities in the truly superconducting state should also persist as resonances in the pseudogap regime. The scattering of quasiparticles by these phase-fluctuations broadens what was (in the superconducting state) a sharp peak in the single-particle spectral function at low energy, as we demonstrate within the context of a simple model. This peak and its broadening is, in principle, accessible via scanning tunneling spectroscopy near extended impurities in the pseudogap regime. If so, such experiments would provide a probe of the extent to which d-wave superconducting correlations persist upon entering the pseudogap regime, thus providing a stringent diagnostic of the phase-fluctuation scenario.Comment: 8 pages, 2 figure

    Internal Modes and Magnon Scattering on Topological Solitons in 2d Easy-Axis Ferromagnets

    Full text link
    We study the magnon modes in the presence of a topological soliton in a 2d Heisenberg easy-axis ferromagnet. The problem of magnon scattering on the soliton with arbitrary relation between the soliton radius R and the "magnetic length" Delta_0 is investigated for partial modes with different values of the azimuthal quantum numbers m. Truly local modes are shown to be present for all values of m, when the soliton radius is enough large. The eigenfrequencies of such internal modes are calculated analytically on limiting case of a large soliton radius and numerically for arbitrary soliton radius. It is demonstrated that the model of an isotropic magnet, which admits an exact analytical investigation, is not adequate even for the limit of small radius solitons, R<<Delta_0: there exists a local mode with nonzero frequency. We use the data about local modes to derive the effective equation of soliton motion; this equation has the usual Newtonian form in contrast to the case of the easy-plane ferromagnet. The effective mass of the soliton is found.Comment: 33 pages (REVTeX), 12 figures (EPS

    Cosmic Ray Diffusion from the Galactic Spiral Arms, Iron Meteorites, and a possible climatic connection?

    Get PDF
    We construct a Galactic cosmic ray (CR) diffusion model while considering that CR sources reside predominantly in the Galactic spiral arms. We find that the CR flux (CRF) reaching the solar system should periodically increase each crossing of a Galactic spiral arm. We search for this signal in the CR exposure age record of Iron meteorites and confirm this prediction. We then check the hypothesis that climate, and in particular the temperature, is affected by the CRF to the extent that glaciations can be induced or completely hindered by possible climatic variations. We find that although the geological evidence for the occurrence of IAEs in the past Eon is not unequivocal, it appears to have a nontrivial correlation with the spiral arm crossings--agreeing in period and phase. Thus, a better timing study of glaciations could either confirm this result as an explanation to the occurrence of IAEs or refute a CRF climatic connection.Comment: 4 Journal pages, 2 figures, revtex4. Appearing today in Phys Rev Let

    Measurement of high order current correlators

    Full text link
    The feasibility of measuring high-order current correlators by means of a linear detector is analyzed. Two different types of measurements are considered: measurement of fluctuation power spectrum and measurement of unequal-time current correlators at fixed points in time. In both cases, formally exact expressions in terms of Keldysh time-ordered electron current operators are derived for the detector output. An explicit time ordering is found for the current correlators under the expectation operator used in measurements of high order unequal-time current correlators. The situation when a detector measures current correlators at different points of a conductor is considered.Comment: 27 page
    corecore